On the complete group classification of the one-dimensional nonlinear Klein-Gordon equation with a delay

被引:25
作者
Long, Feng-Shan [1 ,2 ]
Meleshko, S. V. [1 ]
机构
[1] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima 30000, Thailand
[2] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
关键词
Klein-Gordon equation; delay partial differential equation; Lie group; invariant solution; REACTION-DIFFUSION EQUATIONS; FUNCTIONAL SEPARABLE SOLUTIONS; CONSTRAINTS METHOD;
D O I
10.1002/mma.3769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research gives a complete Lie group classification of the one-dimensional nonlinear delay Klein-Gordon equation. First, the determining equations are derived and their complete solutions are found. Then the complete group classification and representations of all invariant solutions are obtained. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:3255 / 3270
页数:16
相关论文
共 50 条
  • [31] Multi-Solitary Waves for the Nonlinear Klein-Gordon Equation
    Bellazzini, Jacopo
    Ghimenti, Marco
    Le Coz, Stefan
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (08) : 1479 - 1522
  • [32] Asymptotics of the Solution of an Initial-Boundary Value Problem for the One-Dimensional Klein-Gordon Equation on the Half-Line
    Smirnova, E. S.
    [J]. MATHEMATICAL NOTES, 2023, 114 (3-4) : 608 - 618
  • [33] Variational aspects of the Klein-Gordon equation
    Datta, S. N.
    Ghosh, A.
    Chakraborty, R.
    [J]. INDIAN JOURNAL OF PHYSICS, 2015, 89 (02) : 181 - 187
  • [34] On the Numerical Solution of the Klein-Gordon Equation
    Bratsos, A. G.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 939 - 951
  • [35] A Symmetrical Interpretation of the Klein-Gordon Equation
    Michael B. Heaney
    [J]. Foundations of Physics, 2013, 43 : 733 - 746
  • [36] The Klein-Gordon Equation in Machian Model
    Liu, Bin
    Dai, Yun-Chuan
    Hu, Xian-Ru
    Deng, Jian-Bo
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (11) : 3544 - 3551
  • [37] Generalized and functional separable solutions to nonlinear delay Klein-Gordon equations
    Polyanin, Andrei D.
    Zhurov, Alexei I.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2676 - 2689
  • [38] Global nonexistence of solution for a nonlinear Klein-Gordon equation with strong damping, distributed delay and source terms
    Yazid, Fares
    Ouchenane, Djamel
    Djeradi, Fatima Siham
    Guefaifia, Rafik
    [J]. AFRIKA MATEMATIKA, 2023, 34 (04)
  • [39] The Klein-Gordon Equation in Machian Model
    Bin Liu
    Yun-Chuan Dai
    Xian-Ru Hu
    Jian-Bo Deng
    [J]. International Journal of Theoretical Physics, 2011, 50 : 3544 - 3551
  • [40] METHOD OF REFLECTIONS FOR THE KLEIN-GORDON EQUATION
    Korzyuk, Academician Viktor I.
    V. Rudzko, Jan
    [J]. DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2022, 66 (03): : 263 - 268