On the complete group classification of the one-dimensional nonlinear Klein-Gordon equation with a delay

被引:25
作者
Long, Feng-Shan [1 ,2 ]
Meleshko, S. V. [1 ]
机构
[1] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima 30000, Thailand
[2] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
关键词
Klein-Gordon equation; delay partial differential equation; Lie group; invariant solution; REACTION-DIFFUSION EQUATIONS; FUNCTIONAL SEPARABLE SOLUTIONS; CONSTRAINTS METHOD;
D O I
10.1002/mma.3769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research gives a complete Lie group classification of the one-dimensional nonlinear delay Klein-Gordon equation. First, the determining equations are derived and their complete solutions are found. Then the complete group classification and representations of all invariant solutions are obtained. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:3255 / 3270
页数:16
相关论文
共 50 条
[21]   A new method to solve the damped nonlinear Klein-Gordon equation [J].
Lin YingZhen ;
Cui MingGen .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (02) :304-313
[22]   A new method to solve the damped nonlinear Klein-Gordon equation [J].
LIN YingZhen CUI MingGen~+ Department of Mathematics .
Science in China(Series A:Mathematics), 2008, (02) :304-313
[23]   MULTI-TRAVELLING WAVES FOR THE NONLINEAR KLEIN-GORDON EQUATION [J].
Cote, Raphael ;
Martel, Yvan .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (10) :7461-7487
[24]   A new method to solve the damped nonlinear Klein-Gordon equation [J].
YingZhen Lin ;
MingGen Cui .
Science in China Series A: Mathematics, 2008, 51 :304-313
[25]   THE MESHLESS METHODS FOR NUMERICAL SOLUTION OF THE NONLINEAR KLEIN-GORDON EQUATION [J].
Rashidinia, J. ;
Karmipour, Y. ;
Nikan, O. .
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (02) :436-447
[26]   Wave-Particle Duality in Nonlinear Klein-Gordon Equation [J].
N. Riazi .
International Journal of Theoretical Physics, 2011, 50 :3451-3458
[27]   A FOURIER SPECTRAL SCHEME FOR SOLVING NONLINEAR KLEIN-GORDON EQUATION [J].
郭本瑜 ;
曹卫明 ;
Tahira ;
N.Buttar .
NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 1993, (01) :38-56
[28]   Symplectic finite difference approximations of the nonlinear Klein-Gordon equation [J].
Duncan, DB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1742-1760
[29]   Wave-Particle Duality in Nonlinear Klein-Gordon Equation [J].
Riazi, N. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (11) :3451-3458
[30]   Soliton perturbation theory for the quadratic nonlinear Klein-Gordon equation [J].
Biswas, Anjan ;
Zony, Chenwi ;
Zerrad, Essaid .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (01) :153-156