A new theoretical study of the deformed unequal scalar and vector Hellmann plus modified Kratzer potentials within the deformed Klein-Gordon equation in RNCQM symmetries

被引:28
作者
Maireche, Abdelmadjid [1 ]
机构
[1] Univ Msila, Sci Fac, Chem Phys Dept, Lab Phys & Mat, Msila, Algeria
关键词
Klein-Gordon equation; Schrodinger equation; Hellmann potential; modified Kratzer potential; diatomic molecules; noncommutative geometry; Bopp's shift method and star products; BOUND-STATE SOLUTIONS; ARBITRARY L-STATE; GENERALIZED UNCERTAINTY PRINCIPLE; PSEUDOPOTENTIAL METHOD; SCHRODINGER-EQUATIONS; SCATTERING STATES; WAVE-FUNCTIONS; PHASE-SPACE; MOMENTUM; SPECTRUM;
D O I
10.1142/S0217732321502321
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, within the framework of relativistic quantum mechanics and using the improved approximation scheme to the centrifugal term for any lstates via Bopp's shift method and standard perturbation theory, we have obtained the modified energy eigenvalues of a newly proposed modified unequal vector and scalar Hellmann plus modified Kratzer potentials (DUVSHMK-Ps) for some diatomic N-2, I-2, CO, NO, O-2 and HCl molecules. This study includes corrections of the first-order in noncommutativity parameters (Theta,sigma). This potential is a superposition of the attractive Coulomb Yukawa potential plus the Kratzer potential and new central terms appear as a result of the effects of noncommutativity properties of space-space. The obtained energy eigenvalues appear as a function of noncommutativity parameters, the strength parameters (V-0,S-0) and (V-1,S-1) of the (scalar vector) Hellmann potential, the screening range parameter alpha, the dissociation energy of the vector, and scalar potential (D-v,D-s), the equilibrium inter-nuclear distance re in addition to the atomic quantum numbers (n,j,l,s,m). Furthermore, we obtained the corresponding modified energy of DUVSHMK-Ps in the symmetries of non-relativistic noncommutative quantum mechanics (NRNCQM). In both relativistic and non-relativistic problems, we show that the corrections on the spectrum energy are smaller than the main energy in the ordinary cases of RQM and NRQM.
引用
收藏
页数:30
相关论文
共 86 条
  • [21] Noncommutative mapping from the symplectic formalism
    De Andrade, M. A.
    Neves, C.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [22] On quantum mechanics on noncommutative quantum phase space
    Djemaï, AEF
    Smail, H
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) : 837 - 844
  • [23] The Klein-Gordon equation with a Coulomb potential in D dimensions
    Dong, SH
    Gu, XY
    Ma, ZQ
    Yu, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2003, 12 (04): : 555 - 565
  • [24] SPACETIME QUANTIZATION INDUCED BY CLASSICAL GRAVITY
    DOPLICHER, S
    FREDENHAGEN, K
    ROBERTS, JE
    [J]. PHYSICS LETTERS B, 1994, 331 (1-2) : 39 - 44
  • [25] Thermal Properties and Magnetic Susceptibility of Hellmann Potential in Aharonov-Bohm (AB) Flux and Magnetic Fields at Zero and Finite Temperatures
    Edet, C. O.
    Amadi, P. O.
    Onyeaju, M. C.
    Okorie, U. S.
    Sever, R.
    Rampho, G. J.
    Abdullah, Hewa Y.
    Salih, Idris H.
    Ikot, A. N.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2021, 202 (1-2) : 83 - 105
  • [26] Any l-state solutions of the Schrodinger equation interacting with Hellmann-Kratzer potential model
    Edet, C. O.
    Okorie, Kalu Okam
    Louis, Hitler
    Nzeata-Ibe, Nelson A.
    [J]. INDIAN JOURNAL OF PHYSICS, 2020, 94 (02) : 243 - 251
  • [27] Noncommutative quantum mechanics
    Gamboa, J
    Loewe, M
    Rojas, JC
    [J]. PHYSICAL REVIEW D, 2001, 64 (06)
  • [28] Upper bound on the momentum scale in noncommutative phase space of canonical type
    Gnatenko, Kh P.
    Tkachuk, V. M.
    [J]. EPL, 2019, 127 (02)
  • [29] Parameters of noncommutativity in Lie-algebraic noncommutative space
    Gnatenko, Kh P.
    [J]. PHYSICAL REVIEW D, 2019, 99 (02)
  • [30] Composite system in rotationally invariant noncommutative phase space
    Gnatenko, Kh. P.
    Tkachuk, V. M.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (07):