A new theoretical study of the deformed unequal scalar and vector Hellmann plus modified Kratzer potentials within the deformed Klein-Gordon equation in RNCQM symmetries

被引:28
作者
Maireche, Abdelmadjid [1 ]
机构
[1] Univ Msila, Sci Fac, Chem Phys Dept, Lab Phys & Mat, Msila, Algeria
关键词
Klein-Gordon equation; Schrodinger equation; Hellmann potential; modified Kratzer potential; diatomic molecules; noncommutative geometry; Bopp's shift method and star products; BOUND-STATE SOLUTIONS; ARBITRARY L-STATE; GENERALIZED UNCERTAINTY PRINCIPLE; PSEUDOPOTENTIAL METHOD; SCHRODINGER-EQUATIONS; SCATTERING STATES; WAVE-FUNCTIONS; PHASE-SPACE; MOMENTUM; SPECTRUM;
D O I
10.1142/S0217732321502321
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, within the framework of relativistic quantum mechanics and using the improved approximation scheme to the centrifugal term for any lstates via Bopp's shift method and standard perturbation theory, we have obtained the modified energy eigenvalues of a newly proposed modified unequal vector and scalar Hellmann plus modified Kratzer potentials (DUVSHMK-Ps) for some diatomic N-2, I-2, CO, NO, O-2 and HCl molecules. This study includes corrections of the first-order in noncommutativity parameters (Theta,sigma). This potential is a superposition of the attractive Coulomb Yukawa potential plus the Kratzer potential and new central terms appear as a result of the effects of noncommutativity properties of space-space. The obtained energy eigenvalues appear as a function of noncommutativity parameters, the strength parameters (V-0,S-0) and (V-1,S-1) of the (scalar vector) Hellmann potential, the screening range parameter alpha, the dissociation energy of the vector, and scalar potential (D-v,D-s), the equilibrium inter-nuclear distance re in addition to the atomic quantum numbers (n,j,l,s,m). Furthermore, we obtained the corresponding modified energy of DUVSHMK-Ps in the symmetries of non-relativistic noncommutative quantum mechanics (NRNCQM). In both relativistic and non-relativistic problems, we show that the corrections on the spectrum energy are smaller than the main energy in the ordinary cases of RQM and NRQM.
引用
收藏
页数:30
相关论文
共 86 条
  • [1] Noncommutativity from the symplectic point of view
    Abreu, E. M. C.
    Neves, C.
    Oliveira, W.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (26): : 5359 - 5369
  • [2] LAGRANGIAN FORMULATION FOR NONCOMMUTATIVE NONLINEAR SYSTEMS
    Abreu, E. M. C.
    Ananias Neto, J.
    Mendes, A. C. R.
    Neves, C.
    Oliveira, W.
    Marcial, M. V.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (09):
  • [3] On gravity and the uncertainty principle
    Adler, RJ
    Santiago, DI
    [J]. MODERN PHYSICS LETTERS A, 1999, 14 (20) : 1371 - 1381
  • [4] Analytical Bound State Solutions of the Klein-Fock-Gordon Equation for the Sum of Hulthen and Yukawa Potential within SUSY Quantum Mechanics
    Ahmadov, A. I.
    Aslanova, S. M.
    Orujova, M. Sh.
    Badalov, S. V.
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2021, 2021
  • [5] Generalized tanh-shaped hyperbolic potential: bound state solution of Schrodinger equation
    Ahmadov, H., I
    Dadashov, E. A.
    Huseynova, N. Sh
    Badalov, V. H.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (02)
  • [6] [Anonymous], ARXIVHEPTH0007046V2
  • [7] Effective-mass Klein-Gordon-Yukawa problem for bound and scattering states
    Arda, Altug
    Sever, Ramazan
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (09)
  • [8] Bound state solution of the Klein-Gordon equation for vector and scalar Hellmann plus modified Kratzer potentials
    Aspoukeh, Peyman
    Mustafa, Samir
    [J]. CHINESE JOURNAL OF PHYSICS, 2020, 68 : 224 - 235
  • [9] INTRODUCTION OF ROTATION-VIBRATION COUPLING IN DIATOMIC-MOLECULES AND FACTORIZATION METHOD
    BADAWI, M
    BESSIS, N
    BESSIS, G
    [J]. JOURNAL OF PHYSICS PART B ATOMIC AND MOLECULAR PHYSICS, 1972, 5 (08): : L157 - &
  • [10] Weyl-Wigner formulation of noncommutative quantum mechanics
    Bastos, Catarina
    Bertolami, Orfeu
    Dias, Nuno Costa
    Prata, Joao Nuno
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)