Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling

被引:115
|
作者
Fan, Guo-Feng [1 ]
Yu, Meng [1 ]
Dong, Song-Qiao [1 ]
Yeh, Yi-Hsuan [2 ]
Hong, Wei-Chiang [3 ]
机构
[1] Ping Ding Shan Univ, Coll Math & Informat Sci, Ping Ding Shan 467000, Peoples R China
[2] Asia Eastern Univ Sci & Technol, Dept Informat Management, New Taipei 220303, Taiwan
[3] Jiangsu Normal Univ, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Support vector regression (SVR); Grey catastrophe (GC); Random forest (RF); Short term load forecasting; SVR MODEL; NEURAL-NETWORK; ALGORITHM; ENSEMBLE; DECOMPOSITION; MICROGRIDS;
D O I
10.1016/j.jup.2021.101294
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper develops a novel short-term load forecasting model that hybridizes several machine learning methods, such as support vector regression (SVR), grey catastrophe (GC (1,1)), and random forest (RF) modeling. The modeling process is based on the minimization of both SVR and risk. GC is used to process and extract catastrophe points in the long term to reduce randomness. RF is used to optimize forecasting performance by exploiting its superior optimization capability. The proposed SVR-GC-RF model has higher forecasting accuracy (MAPE values are 6.35% and 6.21%, respectively) using electric loads from Australian-Energy-Market-Operator; it can provide analytical support to forecast electricity consumption accurately.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Forecasting Short-Term Electricity Load Using Validated Ensemble Learning
    Sankalpa, Chatum
    Kittipiyakul, Somsak
    Laitrakun, Seksan
    ENERGIES, 2022, 15 (22)
  • [42] A Two-Stage Random Forest Method for Short-term Load Forecasting
    Wu, Xiaoyu
    He, Jinghan
    Yip, Tony
    Lu, Jian
    Lu, Ning
    2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [43] Short-Term Wind Speed or Power Forecasting With Heteroscedastic Support Vector Regression
    Hu, Qinghua
    Zhang, Shiguang
    Yu, Man
    Xie, Zongxia
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2016, 7 (01) : 241 - 249
  • [44] Short-Term Load Forecasting of the Greek Electricity System
    Stamatellos, George
    Stamatelos, Tassos
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [45] Short-Term Electricity Load Forecasting with Machine Learning
    Madrid, Ernesto Aguilar
    Antonio, Nuno
    INFORMATION, 2021, 12 (02) : 1 - 21
  • [46] Short-term electricity load forecasting of buildings in microgrids
    Chitsaz, Hamed
    Shaker, Hamid
    Zareipour, Hamidreza
    Wood, David
    Amjady, Nima
    ENERGY AND BUILDINGS, 2015, 99 : 50 - 60
  • [47] Short-term forecasting of the Abu Dhabi electricity load using multiple weather variables
    Friedrich, Luiz
    Afshari, Afshin
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 3014 - 3026
  • [48] Short-term Load Forecasting Using Multiple Support Vector Machines Based on Fuzzy clustering
    Gaorong
    Liu Xiao-hua
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3183 - 3186
  • [49] Short-term load forecasting in power system using least squares support vector machine
    Lv, Ganyun
    Wang, Xiaodong
    Jin, Yuanyuan
    Computational Intelligence, Theory and Application, 2006, : 117 - 126
  • [50] Short-term load forecasting using support vector machine with SCE-UA algorithm
    Li, Gang
    Cheng, Chun-tian
    Lin, Jian-yi
    Zeng, Yun
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 290 - +