Forecasting short-term electricity load using hybrid support vector regression with grey catastrophe and random forest modeling

被引:115
|
作者
Fan, Guo-Feng [1 ]
Yu, Meng [1 ]
Dong, Song-Qiao [1 ]
Yeh, Yi-Hsuan [2 ]
Hong, Wei-Chiang [3 ]
机构
[1] Ping Ding Shan Univ, Coll Math & Informat Sci, Ping Ding Shan 467000, Peoples R China
[2] Asia Eastern Univ Sci & Technol, Dept Informat Management, New Taipei 220303, Taiwan
[3] Jiangsu Normal Univ, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Support vector regression (SVR); Grey catastrophe (GC); Random forest (RF); Short term load forecasting; SVR MODEL; NEURAL-NETWORK; ALGORITHM; ENSEMBLE; DECOMPOSITION; MICROGRIDS;
D O I
10.1016/j.jup.2021.101294
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper develops a novel short-term load forecasting model that hybridizes several machine learning methods, such as support vector regression (SVR), grey catastrophe (GC (1,1)), and random forest (RF) modeling. The modeling process is based on the minimization of both SVR and risk. GC is used to process and extract catastrophe points in the long term to reduce randomness. RF is used to optimize forecasting performance by exploiting its superior optimization capability. The proposed SVR-GC-RF model has higher forecasting accuracy (MAPE values are 6.35% and 6.21%, respectively) using electric loads from Australian-Energy-Market-Operator; it can provide analytical support to forecast electricity consumption accurately.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Sequential grid approach based support vector regression for short-term electric load forecasting
    Yang, Youlong
    Che, Jinxing
    Deng, Chengzhi
    Li, Li
    APPLIED ENERGY, 2019, 238 : 1010 - 1021
  • [32] Short term electricity load forecasting using a hybrid model
    Zhang, Jinliang
    Wei, Yi-Ming
    Li, Dezhi
    Tan, Zhongfu
    Zhou, Jianhua
    ENERGY, 2018, 158 : 774 - 781
  • [33] Short-term electricity prices forecasting based on support vector regression and Auto-regressive integrated moving average modeling
    Che, Jinxing
    Wang, Jianzhou
    ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (10) : 1911 - 1917
  • [34] A hybrid fuzzy modeling method for short-term load forecasting
    Mastorocostas, PA
    Theocharis, JB
    Kiartzis, SJ
    Bakirtzis, AG
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 51 (3-4) : 221 - 232
  • [35] Short-term load forecasting based on distributed support vector machine
    Liu Xiaohua
    Gao Rong
    Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, : 336 - 339
  • [36] Short-Term Load Forecasting Based on Optimized Random Forest and Optimal Feature Selection
    Magalhaes, Bianca
    Bento, Pedro
    Pombo, Jose
    Calado, Maria do Rosario
    Mariano, Silvio
    ENERGIES, 2024, 17 (08)
  • [37] Long Short-Term Memory-Based Twin Support Vector Regression for Probabilistic Load Forecasting
    Zhang, Zichen
    Dong, Yongquan
    Hong, Wei-Chiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1764 - 1778
  • [38] Short-term load forecasting using informative vector machine
    Dept. of Electronics and Bioinformatics, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
    不详
    IEEJ Trans. Power Energy, 2007, 4 (566-572+2): : 566 - 572+2
  • [39] Short-Term Load Forecasting Using Informative Vector Machine
    Kurata, Eitaro
    Mori, Hiroyuki
    ELECTRICAL ENGINEERING IN JAPAN, 2009, 166 (02) : 23 - 31
  • [40] Short-term Load forecasting by a new hybrid model
    Guo, Hehong
    Du, Guiqing
    Wu, Liping
    Hu, Zhiqiang
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 : 370 - 374