AUTOMATED PROSTATE GLANDULAR AND NUCLEI DETECTION USING HYPER-SPECTRAL IMAGING

被引:0
作者
Zarei, Nilgoon [1 ,2 ]
Bakhtiari, Amir [3 ]
Gallagher, Paul [1 ]
Keys, Mira [4 ]
MacAulay, Calum [1 ,2 ]
机构
[1] British Columbia Canc Res Ctr, Integrat Oncol, Vancouver, BC, Canada
[2] Univ British Columbia, Interdisciplinary Oncol, Vancouver, BC, Canada
[3] Simon Fraser Univ, Comp Sci, Burnaby, BC, Canada
[4] British Columbia Canc Agcy, Radiat Oncol, Vancouver, BC, Canada
来源
2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017) | 2017年
关键词
Prostate Cancer; Glandular Structure; Hyper Spectral Imaging; Morphological Structure; Image processing; Clustering;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Detection and segmentation of glandular structures are important, since these structures contain clinical relevant information regarding the disease status and Gleason grade of prostate cancer. Manual gland segmentation process is very time consuming and subjective, also existing automated methods are not robust and reliable. We set out to design an automated, fast and objective method. In this paper we present an automated methodology for automated detection of structures of interest in digitalized histopathology images of a Tissue Micro Array (TMA). We show a successful method for detection of prostate glandular structures and its nuclei. Our method integrates different techniques: (1) construct hyperspectral transmission images using sixteen light wavelengths, (2) use Principal Component Analysis (PCA) to construct new RGB images, (3) use clustering to segment different structures in an unsupervised fashion, and (4) apply post-processing morphological cleaning as the final step in our pipeline. We detected 80% plus of the glandular structure in 61% of cores, 80%-50% of the glands in 15% of cores and less than 50% of the glands in 24% of cores.
引用
收藏
页码:1028 / 1031
页数:4
相关论文
共 12 条
[1]   Automated grading of prostate cancer using architectural and textural image features [J].
Doyle, Scott ;
Hwang, Mark ;
Shah, Kinsuk ;
Madabhushi, Anant ;
Feldman, Michael ;
Tomaszeweski, John .
2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, :1284-+
[2]   The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma [J].
Epstein, JI ;
Allsbrook, WC ;
Amin, MB ;
Egevad, LL ;
Bastacky, S ;
Beltrán, AL ;
Berner, A ;
Billis, A ;
Boccon-Gibod, L ;
Cheng, L ;
Civantos, F ;
Cohen, C ;
Cohen, MB ;
Datta, M ;
Davis, C ;
Delahunt, B ;
Delprado, W ;
Eble, JN ;
Foster, CS ;
Furusato, M ;
Gaudin, PB ;
Grignon, DJ ;
Humphrey, PA ;
Iczkowski, KA ;
Jones, EC ;
Lucia, S ;
McCue, PA ;
Nazeer, T ;
Oliva, E ;
Pan, CC ;
Pizov, G ;
Reuter, V ;
Samaratunga, H ;
Sebo, T ;
Sesterhenn, I ;
Shevchuk, M ;
Srigley, JR ;
Suzigan, S ;
Takahashi, H ;
Tamboli, P ;
Tan, PH ;
Têtu, B ;
Tickoo, S ;
Tomaszewski, JE ;
Troncoso, P ;
Tsuzuki, T ;
True, LD ;
van der Kwast, T ;
Wheeler, TM ;
Wojno, KJ .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2005, 29 (09) :1228-1242
[3]  
Fu Hao, 2010, COMPUTER VISION PATT
[4]  
Fu Hao, 2012, GLANDVISION NOVEL PO
[5]  
Gunduz Demir, 2010, MED IMAGE ANAL, V14
[6]  
Howlader N., 2011, SEER cancer statistics review, 1975-2008
[7]   Prostate cancer grading: Gland segmentation and structural features [J].
Kien Nguyen ;
Sabata, Bikash ;
Jain, Anil K. .
PATTERN RECOGNITION LETTERS, 2012, 33 (07) :951-961
[8]  
Naik S., 2007, GLAND SEGMENTATION C
[9]  
Naik S., 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, P284
[10]  
Ozgul Etkin Baris, 2011 IEEE 19 SIGN PR, P726