Synchronization of two different hyperchaotic systems using nonlinear control

被引:0
作者
Liu, Xuezhen [1 ]
Li, Yuxia
机构
[1] Shandong Univ Sci & Technol, Coll Informat & Elect Engn, Qingdao 266510, Peoples R China
[2] Shandong Inst Light Ind, Coll Elect Informat & Control Engn, Jinan 250353, Peoples R China
来源
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS | 2007年 / 14卷
关键词
hyperchaotic systems; Lyapunov stability theorem; nonlinear control; synchronization;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the synchronization of hyperchaotic Lorenz system and hyperchaotic Chen system, which were newly presented. Nonlinear control approach is used to synchronize these two different hyperchaotic systems. The stability result is proved by using Lyapunov stability theorem. Moreover, numerical simulations are used to verify the effectiveness of the proposed controller. It is shown that the two different hyperchaotic systems can be synchronized by nonlinear control.
引用
收藏
页码:545 / 549
页数:5
相关论文
共 50 条
[31]   Synchronization of two identical fractional-order hyperchaotic Lorenz systems via active control [J].
1600, ICIC Express Letters Office, Tokai University, Kumamoto Campus, 9-1-1, Toroku, Kumamoto, 862-8652, Japan (07)
[32]   Adaptive Sliding Mode Control for Synchronization of Unified Hyperchaotic Systems [J].
Li, Wang-Long ;
Liang, Wei-Lun ;
Chang, Kuo-Ming .
2019 24TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2019, :93-98
[33]   Synchronization of hyperchaotic systems via improved impulsive control method [J].
Ma Tie-Dong ;
Jiang Wei-Bo ;
Fu Jie ;
Xue Fang-Zheng .
ACTA PHYSICA SINICA, 2012, 61 (10)
[34]   Adaptive Full State Hybrid Projective Synchronization of two Different Hyperchaotic Systems with Fully Uncertain Parameters [J].
He Bingli ;
Li Junmin .
2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, :1380-1384
[35]   Nonlinear control and synchronization of a class of nonlinear coupled dynamical systems [J].
Tang W. ;
Qu Z. ;
Fan X. ;
Long H. .
Journal of Control Theory and Applications, 2013, 11 (4) :623-628
[36]   Nonlinear control and synchronization of a class of nonlinear coupled dynamical systems [J].
Wenyan TANG ;
Zhihua QU ;
Xiaoping FAN ;
Hui LONG .
Journal of Control Theory and Applications, 2013, 11 (04) :623-628
[37]   A Research on the Synchronization of Two Novel Chaotic Systems Based on a Nonlinear Active Control Algorithm [J].
Ahmad, Israr ;
Bin Saaban, Azizan ;
Ibrahim, Adyda Binti ;
Shahzad, Mohammad .
ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2015, 5 (01) :739-747
[38]   CHAOS ANTI-SYNCHRONIZATION BETWEEN DIFFERENT HYPERCHAOTIC SYSTEMS WITH UNCERTAINTY [J].
Zheng Qiang ;
Zhang Xiaoping ;
Ren Zhongzhou .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (14) :2163-2173
[39]   Modified impulsive synchronization of fractional order hyperchaotic systems [J].
浮洁 ;
余淼 ;
马铁东 .
Chinese Physics B, 2011, (12) :164-170
[40]   Modified impulsive synchronization of fractional order hyperchaotic systems [J].
Fu Jie ;
Yu Miao ;
Ma Tie-Dong .
CHINESE PHYSICS B, 2011, 20 (12)