Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator

被引:60
作者
Srivastava, Hari M. [1 ,2 ,3 ]
Motamednezhad, Ahmad [4 ]
Adegani, Ebrahim Analouei [4 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[4] Shahrood Univ Technol, Fac Math Sci, POB 36155-316, Shahrood 36155316, Iran
关键词
analytic functions; univalent functions; bi-univalent functions; coefficient estimates; Taylor-Maclaurin coefficients; Faber polynomial expansion; differential subordination; Tremblay fractional derivative operator; SUBCLASS; BOUNDS;
D O I
10.3390/math8020172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce a general family of analytic and bi-univalent functions in the open unit disk, which is defined by applying the principle of differential subordination between analytic functions and the Tremblay fractional derivative operator. The upper bounds for the general coefficients of functions in this subclass are found by using the Faber polynomial expansion. We have thereby generalized and improved some of the previously published results.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Coefficient Bounds for a New Subclass of Bi-Univalent Functions Defined by Salagean Operator
    Fan CHEN
    Xiaofei LI
    Journal of Mathematical Research with Applications, 2017, 37 (03) : 290 - 298
  • [42] Coefficient Estimates for New Subclasses of Bi-Univalent Functions with Bounded Boundary Rotation by Using Faber Polynomial Technique
    Tang, Huo
    Sharma, Prathviraj
    Sivasubramanian, Srikandan
    AXIOMS, 2024, 13 (08)
  • [43] Coefficient Estimate of Bi-univalent Functions Involving Caputo Fractional Calculus Operator
    Murugusundaramoorthy, G.
    Thilagavathi, K.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2014, 38 (03) : 433 - 444
  • [44] A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator
    Breaz, Daniel
    Orhan, Halit
    Cotirla, Luminita-Ioana
    Arikan, Hava
    AXIOMS, 2023, 12 (02)
  • [45] Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q-Derivative
    El-Deeb, Sheza M.
    Bulboaca, Teodor
    El-Matary, Bassant M.
    MATHEMATICS, 2020, 8 (03)
  • [46] On a subclass of bi-univalent functions defined by convex combination of order α with the Faber polynomial expansion
    Wurenqiqige
    Li Shu-hai
    Dashdondog, Tsedenbayar
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (02) : 278 - 286
  • [47] General coefficient estimates for bi-univalent functions: a new approach
    Al-Refai, Oqlah
    Ali, Mohammed
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (01) : 240 - 251
  • [48] On a subclass of bi-univalent functions defined by convex combination of order α with the Faber polynomial expansion
    Wurenqiqige
    LI Shu-hai
    Tsedenbayar Dashdondog
    Applied Mathematics:A Journal of Chinese Universities, 2021, 36 (02) : 278 - 286
  • [49] Coefficient Bounds for a Certain Class of Analytic and Bi-Univalent Functions
    Srivastava, H. M.
    Eker, Sevtap Sumer
    Ali, Rosihan M.
    FILOMAT, 2015, 29 (08) : 1839 - 1845
  • [50] Coefficient Estimates for a General Subclass of Analytic and Bi-Univalent Functions
    Srivastava, H. M.
    Bulut, Serap
    Caglar, Murat
    Yagmur, Nihat
    FILOMAT, 2013, 27 (05) : 831 - 842