Simulation of runaway electron inception and breakdown in nanosecond pulse gas discharges

被引:15
作者
Zhang, Cheng [1 ,2 ]
Gu, Jianwei [1 ]
Wang, Ruexue [1 ,2 ]
Ma, Hao [1 ]
Yan, Ping [1 ,2 ]
Shao, Tao [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, POB 2703, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Power Elect & Elect Drive, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Gas discharge; Inception time; Nanosecond pulse; Numerical simulation; Runaway electron; X-RAY-EMISSION; VOLTAGE PULSES; GENERATION; PRESSURE; BEAMS; AIR; ENERGY; FIELD;
D O I
10.1017/S0263034615000944
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nanosecond pulse discharges can provide high reduced electric field for exciting high-energy electrons, and the ultrafast rising time of the applied pulse can effectively suppress the generation of spark streamer and produce homogeneous discharges preionized by runaway electrons in atmospheric-pressure air. In this paper, the electrostatic field in a tube-plate electrodes gap is calculated using a calculation software. Furthermore, a simple physical model of nanosecond pulse discharges is established to investigate the behavior of the runaway electrons during the nanosecond pulse discharges with a rise time of 1.6 ns and a full-width at half-maximum of 3-5 ns in air. The physical model is coded by a numerical software, and then the runaway electrons and electron avalanche are investigated under different conditions. The simulated results show that the applied voltage, voltage polarity, and gas pressure can significantly affect the formation of the avalanche and the behavior of the runaway electrons. The inception time of runaway breakdown decreases when the applied voltage increases. In addition, the threshold voltage of runaway breakdown has a minimum value (10 kPa) with the variation of gas pressure.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 38 条
[1]  
Alekseev Sergey B, 2013, [高电压技术, High Voltage Engineering], V39, P2112
[2]   Hot secondary electrons in dielectric barrier discharges treated with Monte Carlo simulation: implication for fluxes to surfaces [J].
Babaeva, Natalia Yu .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (03)
[3]   Spectrum of fast electrons in a subnanosecond breakdown of air-filled diodes at atmospheric pressure [J].
Baksht, E. H. ;
Burachenko, A. G. ;
Kozhevnikov, V. Yu ;
Kozyrev, A. V. ;
Kostyrya, I. D. ;
Tarasenko, V. F. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (30)
[4]   Effect of gas pressure on amplitude and duration of electron beam current in a gas-filled diode [J].
Baksht, E. H. ;
Lomaev, M. I. ;
Rybka, D. V. ;
Sorokin, D. A. ;
Tarasenko, V. F. .
TECHNICAL PHYSICS, 2008, 53 (12) :1560-1564
[5]   The townsend coefficient and runaway of electrons in electronegative gas [J].
Boichenko, AM ;
Tkachev, AN ;
Yakovlenko, SI .
JETP LETTERS, 2003, 78 (11) :709-713
[6]   X-ray radiation from the volume discharge in atmospheric-pressure air [J].
Bratchikov, V. B. ;
Gagarinov, K. A. ;
Kostyrya, I. D. ;
Tarasenko, V. F. ;
Tkachev, A. N. ;
Yakovlenko, S. I. .
TECHNICAL PHYSICS, 2007, 52 (07) :856-864
[7]   Effect of Nitrogen Pressure on the Energy of Runaway Electrons Generated in a Gas Diode [J].
Burachenko, A. G. ;
Tarasenko, V. F. .
TECHNICAL PHYSICS LETTERS, 2010, 36 (12) :1158-1161
[8]   X-RAY-DIAGNOSTICS OF RUNAWAY ELECTRONS IN FAST GAS-DISCHARGES [J].
BYSZEWSKI, WW ;
REINHOLD, G .
PHYSICAL REVIEW A, 1982, 26 (05) :2826-2831
[9]   Generation of runaway electrons in a nonuniform electric field by applying nanosecond voltage pulses with a frequency of 100-1000 Hz [J].
Erofeev, M. V. ;
Baksht, E. Kh. ;
Tarasenko, V. F. ;
Shut'ko, Yu. V. .
TECHNICAL PHYSICS, 2013, 58 (02) :200-206
[10]   Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field [J].
Gurevich, A. V. ;
Mesyats, G. A. ;
Zybin, K. P. ;
Yalandin, M. I. ;
Reutova, A. G. ;
Shpak, V. G. ;
Shunailov, S. A. .
PHYSICAL REVIEW LETTERS, 2012, 109 (08)