SOLUTION OF SPRING-MASS SYSTEM BY USING FADDEEV-LEVERRIER METHOD TOGETHER WITH LAPLACE TRANSFORM

被引:0
作者
Bashir, Tariq [1 ]
机构
[1] Natl Coll Business Adm & Econ, Lahore, Pakistan
来源
ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES | 2020年 / 22卷 / 01期
关键词
algorithm; characteristic polynomial; Faddeev-Leverrier method; Laplace transform; ALGORITHM;
D O I
10.17654/DE022010023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we apply the Laplace transform combined with Faddeev-Leverrier (FL) method to find the characteristic equations and eigenvectors to solve the non-homogeneous system of differential equations. By this method, we will solve spring-mass system.
引用
收藏
页码:23 / 38
页数:16
相关论文
共 21 条
[1]  
Apelblat A., 2012, LAPLACE TRANSFORMS T
[2]  
Ayres Frank, 1998, DIFFERENTIAL EQUATIO
[3]   LEVERRIERS ALGORITHM - A NEW PROOF AND EXTENSIONS [J].
BARNETT, S .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1989, 10 (04) :551-556
[4]   Leverrier's algorithm for orthogonal polynomial bases [J].
Barnett, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 236 :245-263
[5]  
Boscolo I., 2011, LatinAmerican Journal of Physics Education, V5, P409
[6]  
Caltenco J. H., 2007, ED MATEMATICA, V3, P107
[7]  
Dawkins P., DIFFERENTIAL EQUATIO
[8]  
Faddeev D.K., 1963, COMPUTATIONAL METHOD
[9]   INFLUENCE OF THE MASS OF THE SPRING ON ITS STATIC AND DYNAMIC EFFECTS [J].
GALLONI, EE ;
KOHEN, M .
AMERICAN JOURNAL OF PHYSICS, 1979, 47 (12) :1076-1078
[10]  
Gantmacher FR., 1960, THEORY MATRICES 2