Double hop dominating sets in graphs

被引:4
作者
Mollejon, Reynaldo, V [1 ]
Canoy, Sergio R., Jr. [2 ]
机构
[1] Visayas State Univ Villaba, Dept Teacher Educ, VSU Villaba, Villaba 6537, Leyte, Philippines
[2] MSU Iligan Inst Technol, Ctr Graph Theory Algebra & Anal, Premier Res Inst Sci & Math, Coll Sci & Math,Dept Math & Stat, Iligan 9200, Philippines
关键词
Hop domination; double hop domination; join; corona; lexicographic product; NUMBER;
D O I
10.1142/S1793830921500579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V,E) be a connected graph of order n >= 4. A subset S subset of V (G) is a double hop dominating set (or a double 2-step dominating set) if |N-G[v, 2] boolean AND S|>= 2, where NG[v, 2] = {v}boolean OR{w is an element of V (G) : d(G)(v,w) = 2}, for each v is an element of V (G). The smallest cardinality of a double hop dominating set of G, denoted by gamma(h)(x2)(G), is the double hop domination number of G. In this paper, we investigate the concept of double hop dominating sets and study it for graphs resulting from some binary operations.
引用
收藏
页数:11
相关论文
共 11 条
[1]   Bounds on the hop domination number of a tree [J].
Ayyaswamy, S. K. ;
Krishnakumari, B. ;
Natarajan, C. ;
Venkatakrishnan, Y. B. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04) :449-455
[2]  
Canoy SR, 2017, ADV APPL DISCRET MAT, V18, P179, DOI 10.17654/DM018020179
[3]   TOTAL DOMINATION IN GRAPHS [J].
COCKAYNE, EJ ;
DAWES, RM ;
HEDETNIEMI, ST .
NETWORKS, 1980, 10 (03) :211-219
[4]  
Harant J., 2005, DISCUSS MATH GRAPH T, V25, P29, DOI [https://doi.org/10.7151/dmgt.1256, DOI 10.7151/DMGT.1256]
[5]  
Harary F, 2000, ARS COMBINATORIA, V55, P201
[6]  
Haynes T.W., 2013, Fundamentals of Domination in Graphs
[7]  
Haynes TW., 1998, DOMINATION GRAPHS AD
[8]   On 2-Step and Hop Dominating Sets in Graphs [J].
Henning, Michael A. ;
Rad, Nader Jafari .
GRAPHS AND COMBINATORICS, 2017, 33 (04) :913-927
[9]  
Lam PCB, 2007, UTILITAS MATHEMATICA, V72, P223
[10]   Hop Domination in Graphs-II [J].
Natarajan, C. ;
Ayyaswamy, S. K. .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (02) :187-199