Fabrication of fillable microparticles and other complex 3D microstructures

被引:172
作者
McHugh, Kevin J. [1 ]
Nguyen, Thanh D. [1 ,2 ]
Linehan, Allison R. [1 ]
Yang, David [1 ]
Behrens, Adam M. [1 ]
Rose, Sviatlana [1 ]
Tochka, Zachary L. [1 ]
Tzeng, Stephany Y. [1 ]
Norman, James J. [1 ,3 ]
Anselmo, Aaron C. [1 ,4 ]
Xu, Xian [1 ]
Tomasic, Stephanie [1 ]
Taylor, Matthew A. [1 ]
Lu, Jennifer [1 ]
Guarecuco, Rohiverth [1 ]
Langer, Robert [1 ]
Jaklenec, Ana [1 ]
机构
[1] MIT, David H Koch Inst Integrat Canc Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
[3] US FDA, Silver Spring, MD 20993 USA
[4] Univ North Carolina Chapel Hill, Div Pharmacoengn & Mol Pharmaceut, Eshelman Sch Pharm, Chapel Hill, NC 27599 USA
基金
比尔及梅琳达.盖茨基金会;
关键词
MICROENCAPSULATION; MONODISPERSE; CHALLENGES; SCAFFOLDS; RELEASE; SHAPE;
D O I
10.1126/science.aaf7447
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types of microstructures that can be formed. We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives.
引用
收藏
页码:1138 / +
页数:5
相关论文
共 31 条
  • [1] [Anonymous], 2015, PLOS ONE
  • [2] The upcoming 3D-printing revolution in microfluidics
    Bhattacharjee, Nirveek
    Urrios, Arturo
    Kanga, Shawn
    Folch, Albert
    [J]. LAB ON A CHIP, 2016, 16 (10) : 1720 - 1742
  • [3] Opportunities and challenges of developing thermostable vaccines
    Chen, Dexiang
    Kristensen, Debra
    [J]. EXPERT REVIEW OF VACCINES, 2009, 8 (05) : 547 - 557
  • [4] High-resolution direct 3D printed PLGA scaffolds: print and shrink
    Chia, Helena N.
    Wu, Benjamin M.
    [J]. BIOFABRICATION, 2015, 7 (01)
  • [5] Recent advances in 3D printing of biomaterials
    Chia, Helena N.
    Wu, Benjamin M.
    [J]. JOURNAL OF BIOLOGICAL ENGINEERING, 2015, 9
  • [6] Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable microspheres
    Cleland, JL
    Jones, AJS
    [J]. PHARMACEUTICAL RESEARCH, 1996, 13 (10) : 1464 - 1475
  • [7] Determining the optimal PDMS-PDMS bonding technique for microfluidic devices
    Eddings, Mark A.
    Johnson, Michael A.
    Gale, Bruce K.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (06)
  • [8] Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding
    Ferrell, Nicholas
    Woodard, James
    Hansford, Derek
    [J]. BIOMEDICAL MICRODEVICES, 2007, 9 (06) : 815 - 821
  • [9] How to achieve sustained and complete protein release from PLGA-based microparticles?
    Giteau, A.
    Venier-Julienne, M. C.
    Aubert-Pouessel, A.
    Benoit, J. P.
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2008, 350 (1-2) : 14 - 26
  • [10] Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading
    Han, Felicity Y.
    Thurecht, Kristofer J.
    Whittaker, Andrew K.
    Smith, Maree T.
    [J]. FRONTIERS IN PHARMACOLOGY, 2016, 7