Common Boundary Regular Fixed Points for Holomorphic Semigroups in Strongly Convex Domains

被引:5
作者
Abate, Marco [1 ]
Bracci, Filippo [2 ]
机构
[1] Univ Pisa, Dipartmento Matemat, Lgo Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Roma Tor Vergata, Dipartmento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
来源
COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS | 2016年 / 667卷
关键词
BACKWARD-ITERATION; WOLFF POINT; UNIT BALL; BEHAVIOR; MAPPINGS; MAPS; DISK;
D O I
10.1090/conm/667/13527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a bounded strongly convex domain with smooth boundary in C-N. Let (phi(t)) be a continuous semigroup of holomorphic self-maps of D. We prove that if p is an element of partial derivative D is an isolated boundary regular fixed point for phi(t0) for some t(0) > 0, then p is a boundary regular fixed point for phi(t) for all t >= 0. Along the way we also study backward iteration sequences for elliptic holomorphic self-maps of D.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 27 条
[1]   THE LINDELOF PRINCIPLE AND THE ANGULAR DERIVATIVE IN STRONGLY CONVEX DOMAINS [J].
ABATE, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1990, 54 :189-228
[2]  
Abate M, 1989, RES LECT NOTES MATH
[3]   Wolff-Denjoy theorems in nonsmooth convex domains [J].
Abate, Marco ;
Raissy, Jasmin .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (05) :1503-1518
[4]   Backward iteration in strongly convex domains [J].
Abate, Marco ;
Raissy, Jasmin .
ADVANCES IN MATHEMATICS, 2011, 228 (05) :2837-2854
[5]  
Aizenberg L., 2002, COMPLEX VAR THEORY A, V47, P109
[6]   Fixed points of commuting holomorphic mappings other than the Wolff point [J].
Bracci, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (06) :2569-2584
[7]  
Bracci F., J ANAL MATH IN PRESS
[8]  
BRACCI F, 1998, ANN SCUOLA NORM SU S, V27, P131
[9]  
Bracci F, 2009, T AM MATH SOC, V361, P979
[10]   Classification of semigroups of linear fractional maps in the unit ball [J].
Bracci, Filippo ;
Contreras, Manuel D. ;
Diaz-Madrigal, Santiago .
ADVANCES IN MATHEMATICS, 2007, 208 (01) :318-350