共 55 条
Fine-tuning of T-cell receptor avidity to increase HIV epitope variant recognition by cytotoxic T lymphocytes
被引:26
作者:
Bennett, Michael S.
[1
]
Joseph, Aviva
[1
]
Ng, Hwee L.
[1
]
Goldstein, Harris
[1
]
Yang, Otto O.
[2
,3
,4
,5
]
机构:
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Med, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, UCLA AIDS Inst, Los Angeles, CA 90095 USA
[4] Albert Einstein Coll Med, Dept Pediat, Bronx, NY 10467 USA
[5] Albert Einstein Coll Med, Dept Microbiol & Immunol, Bronx, NY 10467 USA
来源:
关键词:
cytotoxic T lymphocytes;
gene therapy;
HIV;
immune evasion;
T-cell receptor;
IMMUNODEFICIENCY-VIRUS TYPE-1;
HIGH-AFFINITY;
VIRAL ESCAPE;
IN-VITRO;
SELECTIVE EXPANSION;
FUNCTIONAL AVIDITY;
LENTIVIRAL-VECTORS;
MUTATIONAL ESCAPE;
PHAGE DISPLAY;
FITNESS COST;
D O I:
10.1097/QAD.0b013e32833f7b22
中图分类号:
R392 [医学免疫学];
Q939.91 [免疫学];
学科分类号:
100102 ;
摘要:
Objective: T-cell receptor (TCR) gene therapy is an approach being considered for HIV-1, but epitope mutation is a significant barrier. We assessed whether HIV-specific TCR can be modified to have broader coverage of epitope variants by recombining polymorphisms between public clonotype TCR sequences. Design: Public clonotype TCRs recognizing the same epitope often differ by polymorphisms in their third complementarity determining regions (CDR3). We assessed whether novel combinations of such polymorphisms could improve TCR recognition of epitope variation. Methods: A TCR recognizing the HLA A*0201-restricted epitope SLYNTVATL (Gag 77-85, SL9) was engineered to have combinations of four polymorphisms in the CDR3 regions compared to another SL9-specific TCR. These novel TCRs were screened for functional avidities against SL9 epitope variants and abilities to mediate cytotoxic T-lymphocyte suppression of HIV-1 containing the same epitope variants. Results: The TCRs varied modestly in functional avidities for SL9 variants, due to alterations in affinity. This translated to differences in antiviral activities against HIV-1 when functional avidity changes crossed the previously defined threshold required for efficient recognition of HIV-1-infected cells. Higher avidity TCR mutants had generally broader recognition of SL9 variants. Conclusion: These results indicate that rationally targeted increases in functional avidities can be utilized to maximize the antiviral breadth of transgenic TCRs. In contrast to previously reported random mutagenesis to markedly increase functional avidities, tuning through recombining naturally occurring polymorphisms may offer a more physiologic approach that minimizes the risk of deleterious TCR reactivities. (C) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins
引用
收藏
页码:2619 / 2628
页数:10
相关论文