Four-dimensional variational assimilation of SSM/I precipitable water content data

被引:0
|
作者
Filiberti, MA
Rabier, F
Thepaut, JN
Eymard, L
Courtier, P
机构
[1] Ctr Etud Environm Terr & Planetaires, Issy Les Moulineaux, France
[2] European Ctr Medium Range Weather Forecasts, Reading, Berks, England
[3] Meteo France, Toulouse, France
关键词
data assimilation; numerical weather prediction; satellite data;
D O I
10.1256/smsqj.54917
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Satellite microwave radiometers provide measurements of precipitable water content (PWC) over the oceans, with a horizontal resolution of a few tens of kilometres. These data represent the water vapour content integrated over the atmospheric column. We assess the value of this source of information for numerical weather prediction systems. We used the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System with a four-dimensional variational method to assimilate the Special Sensor Microwave/Imager (SSM/I) PWC data over a 24-hour period. Our experiments use an incremental variational method. Comparison with observations is made using a multi-level global primitive-equation T106 spectral model with physical parametrizations. Minimization is performed using a T63 adiabatic dynamics model which includes only simplified physics (horizontal diffusion, a simple surface drag and a vertical diffusion scheme). Comparing the control and assimilation experiments with aircraft and other data shows that the use of PWC data from SSM/I improves the analysis. We also obtain a slight improvement in short-range forecasts of almost all parameters when SSM/I-PWC data are used in the assimilation.
引用
收藏
页码:1743 / 1770
页数:28
相关论文
共 50 条
  • [1] Four-dimensional variational data assimilation for a limited area model
    Gustafsson, Nils
    Huang, Xiang-Yu
    Yang, Xiaohua
    Mogensen, Kristian
    Lindskog, Magnus
    Vignes, Ole
    Wilhelmsson, Tomas
    Thorsteinsson, Sigurdur
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2012, 64
  • [2] On four-dimensional variational assimilation of ozone data in weather-prediction models
    Riishojgaard, LP
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1996, 122 (535) : 1545 - 1571
  • [3] An explicit four-dimensional variational data assimilation method
    ChongJian Qiu
    Lei Zhang
    AiMei Shao
    Science in China Series D: Earth Sciences, 2007, 50 : 1232 - 1240
  • [4] An explicit four-dimensional variational data assimilation method
    Qiu ChongJian
    Zhang Lei
    Shao AiMei
    SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2007, 50 (08): : 1232 - 1240
  • [5] An explicit four-dimensional variational data assimilation method
    QIU ChongJian
    ScienceinChina(SeriesD:EarthSciences), 2007, (08) : 1232 - 1240
  • [6] Four-dimensional variational data assimilation system for the Earth ionosphere
    Ostanin, Pavel A.
    Kulyamin, Dmitry V.
    Kostrykin, Sergey V.
    Vasilev, Alexei E.
    Dymnikov, Valentin P.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2025, 40 (01) : 33 - 46
  • [7] Four-dimensional variational data assimilation for Doppler radar wind data
    Rihan, FA
    Collier, CG
    Roulstone, I
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (01) : 15 - 34
  • [8] Parallelization in the time dimension of four-dimensional variational data assimilation
    Fisher, Michael
    Guerol, Selime
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2017, 143 (703) : 1136 - 1147
  • [9] Development of an Efficient Regional Four-Dimensional Variational Data Assimilation System for WRF
    Zhang, Xin
    Huang, Xiang-Yu
    Liu, Jianyu
    Poterjoy, Jonathan
    Weng, Yonghui
    Zhang, Fuqing
    Wang, Hongli
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2014, 31 (12) : 2777 - 2794