ON HAUSDORFF DIMENSION AND TOPOLOGICAL ENTROPY

被引:5
作者
Ma, Dongkui [1 ]
Wu, Min [1 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
关键词
Compact System; Topological Entropy; Hausdorff Dimension; Condition A; Dimension Metric; DYNAMICAL-SYSTEMS; SETS;
D O I
10.1142/S0218348X10004956
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f : X -> X be a continuous map of a compact topological space. If there exists a metric function on X and it satisfies some restricted conditions, we obtain some relationships between Hausdorff dimension and topological entropy for any Z subset of X. Using those results, we also obtain a variational principle of dimensions, generalize some known results and give some examples.
引用
收藏
页码:363 / 370
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 1997, LECT MATH
[2]  
Aoki N., 1989, TOPOLOGICAL DYNAMICS, VVol. 41, P625
[3]   On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity [J].
Barreira, L ;
Pesin, Y ;
Schmeling, J .
CHAOS, 1997, 7 (01) :27-38
[4]   TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS [J].
BOWEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 184 (OCT) :125-136
[6]   Existence of full-Hausdorff-dimension invariant measures of dynamical systems with dimension metrics [J].
Dai, XP .
ARCHIV DER MATHEMATIK, 2005, 85 (05) :470-480
[7]   Some relations between Hausdorff-dimensions and entropies [J].
Dai, XP ;
Zhou, ZL ;
Geng, XY .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (10) :1068-1075
[8]  
Falconer KJ, 1999, Fractal geometry: mathematical foundations and applications
[9]   EXPANSIVENESS, HYPERBOLICITY AND HAUSDORFF DIMENSION [J].
FATHI, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 126 (02) :249-262
[10]   The Hausdorff dimension of recurrent sets in symbolic spaces [J].
Feng, DJ ;
Wu, J .
NONLINEARITY, 2001, 14 (01) :81-85