L1 retrotransposition in neurons is modulated by MeCP2

被引:460
作者
Muotri, Alysson R. [1 ]
Marchetto, Maria C. N. [2 ]
Coufal, Nicole G. [2 ]
Oefner, Ruth [2 ]
Yeo, Gene [3 ]
Nakashima, Kinichi [4 ]
Gage, Fred H. [2 ]
机构
[1] Univ Calif San Diego, Sch Med, Dept Pediat,Dept Cellular & Mol Med, Rady Childrens Hosp San Diego,Stem Cell Program, La Jolla, CA 92093 USA
[2] Salk Inst Biol Studies, Genet Lab, La Jolla, CA 92037 USA
[3] Univ Calif San Diego, Sch Med, Dept Cellular & Mol Med, Stem Cell Program, La Jolla, CA 92093 USA
[4] Nara Inst Sci & Technol, Grad Sch Biol Sci, Lab Mol Neurosci, Ikoma 6300101, Japan
基金
美国国家卫生研究院;
关键词
CPG-BINDING PROTEIN-2; METHYL-CPG; STEM-CELLS; HISTONE DEACETYLASE; ADULT NEUROGENESIS; RETT-SYNDROME; TRANSCRIPTION; HIPPOCAMPUS; SEQUENCES; ELEMENTS;
D O I
10.1038/nature09544
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long interspersed nuclear elements-1 (LINE-1 or L1s) are abundant retrotransposons that comprise approximately 20% of mammalian genomes(1-3). Active L1 retrotransposons can impact the genome in a variety of ways, creating insertions, deletions, new splice sites or gene expression fine-tuning(4-6). We have shown previously that L1 retrotransposons are capable of mobilization in neuronal progenitor cells from rodents and humans and evidence of massive L1 insertions was observed in adult brain tissues but not in other somatic tissues(7,8). In addition, L1 mobility in the adult hippocampus can be influenced by the environment(9). The neuronal specificity of somatic L1 retrotransposition in neural progenitors is partially due to the transition of a Sox2/HDAC1 repressor complex to a Wnt-mediated T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional activator(7,10). The transcriptional switch accompanies chromatin remodelling during neuronal differentiation, allowing a transient stimulation of L1 transcription(7). The activity of L1 retrotransposons during brain development can have an impact on gene expression and neuronal function, thereby increasing brain-specific genetic mosaicism(11,12). Further understanding of the molecular mechanisms that regulate L1 expression should provide new insights into the role of L1 retrotransposition during brain development. Here we show that L1 neuronal transcription and retrotransposition in rodents are increased in the absence of methyl-CpG-binding protein 2 (MeCP2), a protein involved in global DNA methylation and human neurodevelopmental diseases. Using neuronal progenitor cells derived from human induced pluripotent stem cells and human tissues, we revealed that patients with Rett syndrome (RTT), carrying MeCP2 mutations, have increased susceptibility for L1 retrotransposition. Our data demonstrate that L1 retrotransposition can be controlled in a tissue-specific manner and that disease-related genetic mutations can influence the frequency of neuronal L1 retrotransposition. Our findings add a new level of complexity to the molecular events that can lead to neurological disorders.
引用
收藏
页码:443 / 446
页数:4
相关论文
共 30 条
[1]   Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 [J].
Amir, RE ;
Van den Veyver, IB ;
Wan, M ;
Tran, CQ ;
Francke, U ;
Zoghbi, HY .
NATURE GENETICS, 1999, 23 (02) :185-188
[2]   L1 retrotransposition in human neural progenitor cells [J].
Coufal, Nicole G. ;
Garcia-Perez, Jose L. ;
Peng, Grace E. ;
Yeo, Gene W. ;
Mu, Yangling ;
Lovci, Michael T. ;
Morell, Maria ;
O'Shea, K. Sue ;
Moran, John V. ;
Gage, Fred H. .
NATURE, 2009, 460 (7259) :1127-1131
[3]   LINE-mediated retrotransposition of marked Alu sequences [J].
Dewannieux, M ;
Esnault, C ;
Heidmann, T .
NATURE GENETICS, 2003, 35 (01) :41-48
[4]   Human LINE retrotransposons generate processed pseudogenes [J].
Esnault, C ;
Maestre, J ;
Heidmann, T .
NATURE GENETICS, 2000, 24 (04) :363-367
[5]   Genome sequence of the Brown Norway rat yields insights into mammalian evolution [J].
Gibbs, RA ;
Weinstock, GM ;
Metzker, ML ;
Muzny, DM ;
Sodergren, EJ ;
Scherer, S ;
Scott, G ;
Steffen, D ;
Worley, KC ;
Burch, PE ;
Okwuonu, G ;
Hines, S ;
Lewis, L ;
DeRamo, C ;
Delgado, O ;
Dugan-Rocha, S ;
Miner, G ;
Morgan, M ;
Hawes, A ;
Gill, R ;
Holt, RA ;
Adams, MD ;
Amanatides, PG ;
Baden-Tillson, H ;
Barnstead, M ;
Chin, S ;
Evans, CA ;
Ferriera, S ;
Fosler, C ;
Glodek, A ;
Gu, ZP ;
Jennings, D ;
Kraft, CL ;
Nguyen, T ;
Pfannkoch, CM ;
Sitter, C ;
Sutton, GG ;
Venter, JC ;
Woodage, T ;
Smith, D ;
Lee, HM ;
Gustafson, E ;
Cahill, P ;
Kana, A ;
Doucette-Stamm, L ;
Weinstock, K ;
Fechtel, K ;
Weiss, RB ;
Dunn, DM ;
Green, ED .
NATURE, 2004, 428 (6982) :493-521
[6]   DEFINING THE BEGINNING AND END OF KPNI FAMILY SEGMENTS [J].
GRIMALDI, G ;
SKOWRONSKI, J ;
SINGER, MF .
EMBO JOURNAL, 1984, 3 (08) :1753-1759
[7]   Reversal of neurological defects in a mouse model of Rett syndrome [J].
Guy, Jacky ;
Gan, Jian ;
Selfridge, Jim ;
Cobb, Stuart ;
Bird, Adrian .
SCIENCE, 2007, 315 (5815) :1143-1147
[8]   Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes [J].
Han, JS ;
Szak, ST ;
Boeke, JD .
NATURE, 2004, 429 (6989) :268-274
[9]   Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription [J].
Jones, PL ;
Veenstra, GJC ;
Wade, PA ;
Vermaak, D ;
Kass, SU ;
Landsberger, N ;
Strouboulis, J ;
Wolffe, AP .
NATURE GENETICS, 1998, 19 (02) :187-191
[10]   Mobile elements and disease [J].
Kazazian, HH .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (03) :343-350