Decomposition of bounded degree graphs into C4-free subgraphs

被引:4
作者
Kang, Ross J. [1 ]
Perarnau, Guillem [2 ]
机构
[1] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands
[2] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
关键词
MULTICOLOR RAMSEY NUMBERS;
D O I
10.1016/j.ejc.2014.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every graph with maximum degree Delta admits a partition of its edges into O(root Delta) parts (as Delta -> infinity) none of which contains C-4 as a subgraph. This bound is sharp up to a constant factor. Our proof uses an iterated random colouring procedure. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 13 条
[1]  
Burr S.A., 1976, Ars Comb., V1, P167
[2]   MULTICOLOR RAMSEY NUMBERS FOR COMPLETE BIPARTITE GRAPHS [J].
CHUNG, FRK ;
GRAHAM, RL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) :164-169
[3]  
Erdos P., 1938, MITT FORSCHUNGSINST, V2, P74
[4]  
Füredi Z, 2013, BOLYAI SOC MATH STUD, V25, P169
[5]  
Irving R. W., 1974, Discrete Mathematics, V9, P251, DOI 10.1016/0012-365X(74)90008-9
[6]   Degree Ramsey numbers for cycles and blowups of trees [J].
Jiang, Tao ;
Milans, Kevin G. ;
West, Douglas B. .
EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) :414-423
[7]   Degree Ramsey Numbers of Graphs [J].
Kinnersley, William B. ;
Milans, Kevin G. ;
West, Douglas B. .
COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2) :229-253
[8]   Multi-color Ramsey numbers of even cycles [J].
Li, Yusheng ;
Lih, Ko-Wei .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (01) :114-118
[9]  
Molloy M., 2002, ALGORITHM COMBINAT, V23
[10]  
Nash-Williams C.S.J., 1964, J. Lond. Math. Soc, P12, DOI [10.1112/jlms/s1-39.1.12, DOI 10.1112/JLMS/S1-39.1.12]