A DETERMINANT FORMULA FOR RELATIVE CONGRUENCE ZETA FUNCTIONS FOR CYCLOTOMIC FUNCTION FIELDS

被引:1
|
作者
Shiomi, Daisuke [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
congruence zeta function; cyclotomic function fields; CLASS NUMBER;
D O I
10.1017/S1446788710000261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rosen gave a determinant formula for relative class numbers for cyclotomic function fields, which may be regarded as an analogue of the classical Maillet determinant. In this paper, we give a determinant formula for relative congruence zeta functions for cyclotomic function fields. Our formula may be regarded as a generalization of the determinant formula for the relative class number.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 38 条
  • [21] Genus fields of abelian extensions of rational congruence function fields
    Maldonado-Ramirez, Myriam
    Rzedowski-Calderon, Martha
    Villa-Salvador, Gabriel
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 20 : 40 - 54
  • [22] ON THE p-DIVISIBILITY OF CLASS NUMBERS OF CYCLOTOMIC FUNCTION FIELDS
    Shiomi, Daisuke
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2019, 61 (01) : 85 - 94
  • [23] Binary Sequences With a Low Correlation via Cyclotomic Function Fields
    Jin, Lingfei
    Ma, Liming
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3445 - 3454
  • [24] On the size of determinants in the class number formulae of cyclotomic function fields
    Aoyama, Daiki
    Kimura, Iwao
    JSIAM LETTERS, 2020, 12 : 17 - 20
  • [25] THE p-PART OF DIVISOR CLASS NUMBERS FOR CYCLOTOMIC FUNCTION FIELDS
    Shiomi, Daisuke
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 715 - 723
  • [26] ON ZETA AND L-FUNCTIONS OVER QUADRATIC NUMBER FIELDS
    Kokluce, Bulent
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2008, 26 (04): : 267 - 280
  • [27] Binary Sequences With a Low Correlation via Cyclotomic Function Fields of Odd Characteristic
    Hu, Xubin
    Jin, Lingfei
    Ma, Liming
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (02) : 1397 - 1407
  • [28] Evaluation of the Dedekind zeta functions at s =-1 of the simplest quartic fields
    Lee, Jun Ho
    JOURNAL OF NUMBER THEORY, 2014, 143 : 24 - 45
  • [29] Genus fields of abelian extensions of rational congruence function fields (vol 20, pg 40, 2013)
    Maldonado-Ramirez, Myriam
    Rzedowski-Calderon, Martha
    Villa-Salvador, Gabriel
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 283 - 285
  • [30] Upper bound and formula for class numbers of abelian function fields
    MA Lianrong and ZHANG Xianke (Department of Mathematical Sciences
    ProgressinNaturalScience, 2006, (03) : 321 - 323