Half-cell electrode assessments of a crossover-tolerant direct methanol fuel cell with a platinum group metal-free cathode

被引:12
作者
Abdelrahman, Mohamed E. [1 ]
Zhang, Hanguang [2 ]
Wu, Gang [2 ]
Li, Xianglin [3 ]
Litster, Shawn [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Univ Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
[3] Univ Kansas, Dept Mech Engn, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
DMFC; Methanol; Fuel cell; PGM-free; Nano-CT; Reference electrode; OXYGEN-REDUCTION; CATALYSTS; FE; CARBON; PERFORMANCE; IDENTIFICATION; HYDROGEN;
D O I
10.1016/j.electacta.2022.140262
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, a platinum group metal- free (PGM-free) Fe-N-C oxygen reduction reaction (ORR) catalyst derived from metal organic framework precursors (Fe-MOF) is evaluated at the cathode side of a direct methanol fuel cell (DMFC). A wide range of methanol concentrations were used, and the performance of the DMFC using air was evaluated and compared to a commercial Pt/C cathode. We conducted our tests with a custom, integrated H2 reference electrode that separately provided the anode and cathode overpotentials. This allowed us to perform a Tafel analysis on both electrodes and understand the dominant polarizations involved at the PGM-free cathode and the PtRu/C anode. Overall, we achieved a high cell performance using a Fe-N-C based catalyst under liquid methanol and air operation with a peak power density of 111 mW/cm(2), where the cathode presented a markedly larger contribution to the voltage loss versus the anode. Additionally, we used nanoscale X-ray computed tomography (nano-CT) to image the Fe-N-C cathode and investigate the ionomer and pore size distributions allowing us to identify areas of improvement for catalyst layer fabrication.
引用
收藏
页数:10
相关论文
共 44 条
[1]  
Bockris J.O., 1969, Fuel Cells: Their electrochemistry
[2]   Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures [J].
Chu, D ;
Gilman, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (05) :1685-1690
[4]   Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst [J].
Gojkovic, SL ;
Vidakovic, TR ;
Durovic, DR .
ELECTROCHIMICA ACTA, 2003, 48 (24) :3607-3614
[5]  
Gostick J, 2019, J OPEN SOURCE SOFTW, V4, P1296, DOI [10.21105/joss.01296, 10.21105/joss.01296, DOI 10.21105/JOSS.01296]
[6]   Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy [J].
He, Yanghua ;
Hwang, Sooyeon ;
Cullen, David A. ;
Uddin, M. Aman ;
Langhorst, Lisa ;
Li, Boyang ;
Karakalos, Stavros ;
Kropf, A. Jeremy ;
Wegener, Evan C. ;
Sokolowski, Joshua ;
Chen, Mengjie ;
Myers, Debbie ;
Su, Dong ;
More, Karren L. ;
Wang, Guofeng ;
Litster, Shawn ;
Wu, Gang .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (01) :250-260
[7]   Measurement of methanol crossover in direct methanol fuel cell [J].
Hikita, S ;
Yamane, K ;
Nakajima, Y .
JSAE REVIEW, 2001, 22 (02) :151-156
[8]   Structure of Fe-Nx-C Defects in Oxygen Reduction Reaction Catalysts from First-Principles Modeling [J].
Holby, Edward F. ;
Wu, Gang ;
Zelenay, Piotr ;
Taylor, Christopher D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (26) :14388-14393
[9]   Investigation of Hydrogen Starvation of Polymer Electrolyte Fuel Cells in Freezing Condition Using Reference Electrode [J].
Hu, L. ;
Hong, B. K. ;
Oh, J. G. ;
Litster, S. .
POLYMER ELECTROLYTE FUEL CELLS 17 (PEFC 17), 2017, 80 (08) :535-542
[10]  
Jung DH, 1998, J POWER SOURCES, V71, P169, DOI 10.1016/S0378-7753(97)02793-6