Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers

被引:156
|
作者
Albert, S. [1 ]
Bauer, Th. [2 ,6 ]
Michl, M. [2 ]
Biroli, G. [3 ,4 ]
Bouchaud, J. -P. [5 ]
Loidl, A. [2 ]
Lunkenheimer, P. [2 ]
Tourbot, R. [1 ]
Wiertel-Gasquet, C. [1 ]
Ladieu, F. [1 ]
机构
[1] Univ Paris Saclay, CEA Saclay, CNRS, SPEC,CEA, Bat 772, F-91191 Gif Sur Yvette, France
[2] Univ Augsburg, Ctr Elect Correlat & Magnetism, Expt Phys 5, D-86159 Augsburg, Germany
[3] Univ Paris Saclay, CEA Saclay, CNRS, IPhT,CEA, Bat 774, F-91191 Gif Sur Yvette, France
[4] Ecole Normale Super, LPS, 24 Rue Lhomond, F-75231 Paris 05, France
[5] Capital Fund Management, 23 Rue Univ, F-75007 Paris, France
[6] Tech Univ Munich, Inst Machine Tools & Ind Management, D-85748 Garching, Germany
关键词
SUPERCOOLED LIQUIDS; FORMING LIQUIDS; RELAXATION; TRANSITION; DYNAMICS;
D O I
10.1126/science.aaf3182
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glasses are ubiquitous in daily life and technology. However, the microscopic mechanisms generating this state of matter remain subject to debate: Glasses are considered either as merely hyperviscous liquids or as resulting from a genuine thermodynamic phase transition toward a rigid state. We showthat third-and fifth-order susceptibilities provide a definite answer to this long-standing controversy. Performing the corresponding high-precision nonlinear dielectric experiments for supercooled glycerol and propylene carbonate, we find strong support for theories based on thermodynamic amorphous order. Moreover, when lowering temperature, we find that the growing transient domains are compact-that is, their fractal dimension d(f) = 3. The glass transitionmay thus represent a class of critical phenomena different from canonical second-order phase transitions for which d(f) < 3.
引用
收藏
页码:1308 / 1311
页数:4
相关论文
共 38 条
  • [1] Thermodynamic and dynamic fragility in metallic glass-formers
    Dalla Fontana, Giulia
    Battezzati, Livio
    ACTA MATERIALIA, 2013, 61 (06) : 2260 - 2267
  • [2] Evidence of a one-dimensional thermodynamic phase diagram for simple glass-formers
    Hansen, H. W.
    Sanz, A.
    Adrjanowicz, K.
    Frick, B.
    Niss, K.
    NATURE COMMUNICATIONS, 2018, 9
  • [3] ON A FIFTH-ORDER DIFFERENCE EQUATION
    Stevic, Stevo
    Diblik, Josef
    Iricanin, Bratislav
    Smarda, Zdenek
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (07) : 1214 - 1227
  • [4] Pinning susceptibility: a novel method to study growth of amorphous order in glass-forming liquids
    Das, Rajsekhar
    Chakrabarty, Saurish
    Karmakar, Smarajit
    SOFT MATTER, 2017, 13 (38) : 6929 - 6937
  • [5] Structural order as a genuine control parameter of dynamics in simple glass formers
    Tong, Hua
    Tanaka, Hajime
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [6] Dynamic Order-Disorder in Atomistic Models of Structural Glass Formers
    Hedges, Lester O.
    Jack, Robert L.
    Garrahan, Juan P.
    Chandler, David
    SCIENCE, 2009, 323 (5919) : 1309 - 1313
  • [7] Dominant Fifth-Order Correlations in Doped Quantum Antiferromagnets
    Bohrdt, A.
    Wang, Y.
    Koepsell, J.
    Kanasz-Nagy, M.
    Demler, E.
    Grusdt, F.
    PHYSICAL REVIEW LETTERS, 2021, 126 (02)
  • [8] On a Fifth-Order Method for Multiple Roots of Nonlinear Equations
    Neta, Beny
    SYMMETRY-BASEL, 2023, 15 (09):
  • [9] Soft-Switching Fifth-Order Boost Converter
    Veerachary, M.
    2011 ANNUAL IEEE INDIA CONFERENCE (INDICON-2011): ENGINEERING SUSTAINABLE SOLUTIONS, 2011,
  • [10] Utilizing Microcavities To Suppress Third-Order Cascades in Fifth-Order Raman Spectra
    Zhang, Zhedong
    Bennett, Kochise
    Chernyak, Vladimir
    Mukamel, Shaul
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (14): : 3387 - 3391