High-Yield Production, Characterization, and Functionalization of Recombinant Magnetosomes in the Synthetic Bacterium Rhodospirillum rubrum "magneticum"

被引:11
作者
Mickoleit, Frank [1 ]
Rosenfeldt, Sabine [2 ]
Toro-Nahuelpan, Mauricio [1 ,3 ,5 ]
Schaffer, Miroslava [3 ]
Schenk, Anna S. [4 ]
Plitzko, Jurgen M. [3 ]
Schueler, Dirk [1 ]
机构
[1] Univ Bayreuth, Dept Microbiol, D-95447 Bayreuth, Germany
[2] Univ Bayreuth, Bavarian Polymer Inst BPI, Phys Chem 1, D-95447 Bayreuth, Germany
[3] Max Planck Inst Biochem, Dept Mol Struct Biol, D-82152 Martinsried, Germany
[4] Univ Bayreuth, Bavarian Polymer Inst BPI, Phys Chem Colloidal Sys, D-95447 Bayreuth, Germany
[5] EMBL Heidelberg, Struct & Computat Biol Unit, D-69117 Heidelberg, Germany
来源
ADVANCED BIOLOGY | 2021年 / 5卷 / 09期
基金
欧洲研究理事会;
关键词
genetic engineering; magnetic nanoparticles; magnetosomes; phototrophic cultivation; Rhodospirillum rubrum; MAGNETOSPIRILLUM-GRYPHISWALDENSE MSR-1; AMB-1 MAGNETOTACTIC BACTERIA; PURPLE NONSULFUR BACTERIA; BETA-GLUCURONIDASE; INTRACYTOPLASMIC MEMBRANE; BIOHYDROGEN PRODUCTION; ANAEROBIC GROWTH; REDOX CONTROL; BIOMINERALIZATION; CULTURE;
D O I
10.1002/adbi.202101017
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Recently, the photosynthetic Rhodospirillum rubrum has been endowed with the ability of magnetosome biosynthesis by transfer and expression of biosynthetic gene clusters from the magnetotactic bacterium Magnetospirillum gryphiswaldense. However, the growth conditions for efficient magnetite biomineralization in the synthetic R. rubrum "magneticum", as well as the particles themselves (i.e., structure and composition), have so far not been fully characterized. In this study, different cultivation strategies, particularly the influence of temperature and light intensity, are systematically investigated to achieve optimal magnetosome biosynthesis. Reduced temperatures <= 16 degrees C and gradual increase in light intensities favor magnetite biomineralization at high rates, suggesting that magnetosome formation might utilize cellular processes, cofactors, and/or pathways that are linked to photosynthetic growth. Magnetosome yields of up to 13.6 mg magnetite per liter cell culture are obtained upon photoheterotrophic large-scale cultivation. Furthermore, it is shown that even more complex, i.e., oligomeric, catalytically active functional moieties like enzyme proteins can be efficiently expressed on the magnetosome surface, thereby enabling the in vivo functionalization by genetic engineering. In summary, it is demonstrated that the synthetic R. rubrum "magneticum" is a suitable host for high-yield magnetosome biosynthesis and the sustainable production of genetically engineered, bioconjugated magnetosomes.
引用
收藏
页数:14
相关论文
共 85 条
[1]   Fluorescent magnetosomes for controlled and repetitive drug release under the application of an alternating magnetic field under conditions of limited temperature increase (&lt;2.5 °C) [J].
Alphandery, Edouard ;
Haidar, Darine Abi ;
Seksek, Olivier ;
Guyot, Francois ;
Chebbi, Imene .
NANOSCALE, 2018, 10 (23) :10918-10933
[2]   Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia [J].
Alphandery, Edouard ;
Guyot, Francois ;
Chebbi, Imene .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2012, 434 (1-2) :444-452
[3]   Chains of Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy [J].
Alphandery, Edouard ;
Faure, Stephanie ;
Seksek, Olivier ;
Guyot, Francois ;
Chebbi, Imene .
ACS NANO, 2011, 5 (08) :6279-6296
[4]   Photoheterotrophic Assimilation of Valerate and Associated Polyhydroxyalkanoate Production by Rhodospirillum rubrum [J].
Bayon-Vicente, Guillaume ;
Zarbo, Sarah ;
Deutschbauer, Adam ;
Wattiez, Ruddy ;
Leroy, Baptiste .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2020, 86 (18)
[5]   Biologically controlled synthesis and assembly of magnetite nanoparticles [J].
Bennet, Mathieu ;
Bertinetti, Luca ;
Neely, Robert K. ;
Schertel, Andreas ;
Koernig, Andre ;
Flors, Cristina ;
Mueller, Frank D. ;
Schueler, Dirk ;
Klumpp, Stefan ;
Faivre, Damien .
FARADAY DISCUSSIONS, 2015, 181 :71-83
[6]   A Method for Producing Highly Pure Magnetosomes in Large Quantity for Medical Applications Using Magnetospirillum gryphiswaldense MSR-1 Magnetotactic Bacteria Amplified in Minimal Growth Media [J].
Berny, Clement ;
Le Fevre, Raphael ;
Guyot, Francois ;
Blondeau, Karine ;
Guizonne, Christine ;
Rousseau, Emilie ;
Bayan, Nicolas ;
Alphandery, Edouard .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
[7]   New Vectors for Chromosomal Integration Enable High-Level Constitutive or Inducible Magnetosome Expression of Fusion Proteins in Magnetospirillum gryphiswaldense [J].
Borg, Sarah ;
Hofmann, Julia ;
Pollithy, Anna ;
Lang, Claus ;
Schueler, Dirk .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2014, 80 (08) :2609-2616
[8]   Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor [J].
Boucher, M. ;
Geffroy, F. ;
Preveral, S. ;
Bellanger, L. ;
Selingue, E. ;
Adryanczyk-Perrier, G. ;
Pean, M. ;
Lefevre, C. T. ;
Pignol, D. ;
Ginet, N. ;
Meriaux, S. .
BIOMATERIALS, 2017, 121 :167-178
[9]   Stepwise reduction of the culture redox potential allows the analysis of microaerobic metabolism and photosynthetic membrane synthesis in Rhodospirillum rubrum [J].
Carius, Lisa ;
Haedicke, Oliver ;
Grammel, Hartmut .
BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (02) :573-585
[10]   FINE STRUCTURE OF RHODOSPIRILLUM RUBRUM [J].
COHENBAZIRE, G ;
KUNISAWA, R .
JOURNAL OF CELL BIOLOGY, 1963, 16 (02) :401-&