Novel materials from bis(arene)metal-containing polyacrylonitrile

被引:0
作者
Domrachev, GA
Klapshina, LG
Semenov, VV
Douglas, WE
Antipov, OL
Kuzhelev, AS
Sorokin, AA
机构
[1] Russian Acad Sci, GA Razuvaev Inst Metalloorgan Chem, Nizhnii Novgorod 603600, Russia
[2] Univ Montpellier 2, CNRS, UMR 5637, F-34095 Montpellier 5, France
[3] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603600, Russia
关键词
chromium; vanadium; polyacrylonitrile; pyrolysis; thermolysis; third-order non-linear optical; NLO; conjugated; polymers; degenerate four-wave mixing;
D O I
10.1002/1099-0739(200101)15:1<51::AID-AOC116>3.0.CO;2-9
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Novel bis(arene)metal-containing polyacrylonitrile materials have been prepared by the polycyanoethylation reaction between acrylonitrile and (arene)(2)M (M = Cr or V; arene = PhH, C6H4Et2 Or mesitylene) in the absence of solvent. The resulting star-shaped molecules consist of a central (arene)(2)M species with up to four polyacrylonitrile arms covalently bonded to the arene ligands, The materials are readily soluble and films can be cast from solutions in acetonitrile. The IR and solid state C-13 NMR spectra (or EPR spectrum for the oxidized chromium-containing polymer) are consistent with the presence of a metal-arene bond and confirm the persistence of the sandwich structure. The properties of the thermolysed materials are consistent with the formation of conjugated naphthyridine-type structures. The value of \n(2)\ determined by the degenerate four-wave mixing technique at 1064 nm with a 6 ns pulse duration for a solution in cone. H2SO4 (1 g 1(-1)) of the chromium-containing polymer pyrolysed at 350 OC was found to be 0.8 x 10(-13) cm(2) W-1 corresponding to \Re-x((3))\ =0.4 x 10(-11) esu. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 14 条
  • [1] Degenerate four-wave mixing measurements of the non-linear response of conjugated silicon-ethynylene polymers.
    Antipov, OL
    Afanas'ev, AV
    Domrachev, GA
    Douglas, WE
    Guy, DMH
    Klapshina, LG
    Kuzhelev, AS
    [J]. LASER MATERIAL CRYSTAL GROWTH AND NONLINEAR MATERIALS AND DEVICES, 1999, 3610 : 95 - 102
  • [2] ELECTRONIC-STRUCTURE EVOLUTION UPON THERMAL-TREATMENT OF POLYACRYLONITRILE - A THEORETICAL INVESTIGATION
    BREDAS, JL
    SALANECK, WR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (04) : 2219 - 2226
  • [3] BULGAKOV VK, 1990, MODELLING BURNING PO, P175
  • [4] OPTICAL STUDIES OF PYROLYZED POLYACRYLONITRILE
    CHUNG, TC
    SCHLESINGER, Y
    ETEMAD, S
    MACDIARMID, AG
    HEEGER, AJ
    [J]. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1984, 22 (07) : 1239 - 1246
  • [5] Domrachev GA, 1999, POLYM ADVAN TECHNOL, V10, P215, DOI 10.1002/(SICI)1099-1581(199904)10:4<215::AID-PAT864>3.0.CO
  • [6] 2-5
  • [7] DOMRACHEV GA, 1962, POLYM SCI USSR, V4, P567
  • [8] Porphyrazines: Synthesis, properties, application
    Kopranenkov, VN
    Lukyanets, EA
    [J]. RUSSIAN CHEMICAL BULLETIN, 1995, 44 (12) : 2216 - 2232
  • [9] A ROOM-TEMPERATURE MOLECULAR ORGANIC BASED MAGNET
    MANRIQUEZ, JM
    YEE, GT
    MCLEAN, RS
    EPSTEIN, AJ
    MILLER, JS
    [J]. SCIENCE, 1991, 252 (5011) : 1415 - 1417
  • [10] RESOLUTION OF THE NUCLEAR AND ELECTRONIC CONTRIBUTIONS TO THE OPTICAL NONLINEARITY IN POLYSILANES
    MCGRAW, DJ
    SIEGMAN, AE
    WALLRAFF, GM
    MILLER, RD
    [J]. APPLIED PHYSICS LETTERS, 1989, 54 (18) : 1713 - 1715