CNN-based burned area mapping using radar and optical data

被引:68
作者
Belenguer-Plomer, Miguel A. [1 ,2 ]
Tanase, Mihai A. [1 ]
Chuvieco, Emilio [1 ]
Bovolo, Francesca [2 ]
机构
[1] Univ Alcala, Environm Remote Sensing Res Grp, Dept Geol Geog & Environm, Alcala De Henares 28801, Spain
[2] Fdn Bruno Kessler, Ctr Informat & Commun Technol, I-38122 Trento, Italy
关键词
Burned area mapping; Convolutional neural networks; Deep learning; SAR; Sentinel-1; Sentinel-2; Wildland fires; LAND-COVER; SAR BACKSCATTER; NEURAL-NETWORKS; BOREAL FORESTS; FIRE SCARS; SENTINEL-1; CLIMATE; CLASSIFICATION; ALGORITHM; PRODUCT;
D O I
10.1016/j.rse.2021.112468
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, we present an in-depth analysis of the use of convolutional neural networks (CNN), a deep learning method widely applied in remote sensing-based studies in recent years, for burned area (BA) mapping combining radar and optical datasets acquired by Sentinel-1 and Sentinel-2 on-board sensors, respectively. Combining active and passive datasets into a seamless wall-to-wall cloud cover independent mapping algorithm significantly improves existing methods based on either sensor type. Five areas were used to determine the optimum model settings and sensors integration, whereas five additional ones were utilised to validate the results. The optimum CNN dimension and data normalisation were conditioned by the observed land cover class and data type (i.e., optical or radar). Increasing network complexity (i.e., number of hidden layers) only resulted in rising computing time without any accuracy enhancement when mapping BA. The use of an optimally defined CNN within a joint active/passive data combination allowed for (i) BA mapping with similar or slightly higher accuracy to those achieved in previous approaches based on Sentinel-1 (Dice coefficient, DC of 0.57) or Sentinel-2 (DC 0.7) only and (ii) wall-to-wall mapping by eliminating information gaps due to cloud cover, typically observed for opticalbased algorithms.
引用
收藏
页数:16
相关论文
共 113 条
[11]   Evaluation of backscatter coefficient temporal indices for burned area mapping [J].
Belenguer-Plomer, Miguel A. ;
Chuvieco, Emilio ;
Tanase, Mihai A. .
ACTIVE AND PASSIVE MICROWAVE REMOTE SENSING FOR ENVIRONMENTAL MONITORING III, 2019, 11154
[12]   Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies [J].
Belenguer-Plomer, Miguel A. ;
Tanase, Mihai A. ;
Fernandez-Carrillo, Angel ;
Chuvieco, Emilio .
REMOTE SENSING OF ENVIRONMENT, 2019, 233
[13]   Insights into burned areas detection from Sentinel-1 data and locally adaptive algorithms [J].
Belenguer-Plomer, Miguel A. ;
Tanase, Mihai A. ;
Fernandez-Carrillo, Angel ;
Chuvieco, Emilio .
ACTIVE AND PASSIVE MICROWAVE REMOTE SENSING FOR ENVIRONMENTAL MONITORING II, 2018, 10788
[14]  
Benedetti A, 2018, INT GEOSCI REMOTE SE, P1962, DOI 10.1109/IGARSS.2018.8517586
[15]   M3Fusion: A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite Data Fusion [J].
Benedetti, Paola ;
Ienco, Dino ;
Gaetano, Raffaele ;
Ose, Kenji ;
Pensa, Ruggero G. ;
Dupuy, Stephane .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (12) :4939-4949
[16]   THE CONCEPT OF ESSENTIAL CLIMATE VARIABLES IN SUPPORT OF CLIMATE RESEARCH, APPLICATIONS, AND POLICY [J].
Bojinski, Stephan ;
Verstraete, Michel ;
Peterson, Thomas C. ;
Richter, Carolin ;
Simmons, Adrian ;
Zemp, Michael .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2014, 95 (09) :1431-1443
[17]   Mapping fire scars in global boreal forests using imaging radar data [J].
Bourgeau-Chavez, LL ;
Kasischke, ES ;
Brunzell, S ;
Mudd, JP ;
Tukman, M .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (20) :4211-4234
[18]   Use of the SAR Shadowing Effect for Deforestation Detection with Sentinel-1 Time Series [J].
Bouvet, Alexandre ;
Mermoz, Stephane ;
Ballere, Marie ;
Koleck, Thierry ;
Le Toan, Thuy .
REMOTE SENSING, 2018, 10 (08)
[19]  
Bowman D., 2020, WILDFIRES AUSTR NEED
[20]   Fire in the Earth System [J].
Bowman, David M. J. S. ;
Balch, Jennifer K. ;
Artaxo, Paulo ;
Bond, William J. ;
Carlson, Jean M. ;
Cochrane, Mark A. ;
D'Antonio, Carla M. ;
DeFries, Ruth S. ;
Doyle, John C. ;
Harrison, Sandy P. ;
Johnston, Fay H. ;
Keeley, Jon E. ;
Krawchuk, Meg A. ;
Kull, Christian A. ;
Marston, J. Brad ;
Moritz, Max A. ;
Prentice, I. Colin ;
Roos, Christopher I. ;
Scott, Andrew C. ;
Swetnam, Thomas W. ;
van der Werf, Guido R. ;
Pyne, Stephen J. .
SCIENCE, 2009, 324 (5926) :481-484