On the Loop Homology of a Certain Complex of RNA Structures

被引:2
作者
Li, Thomas J. X. [1 ,3 ,4 ]
Reidys, Christian M. [1 ,2 ,3 ,4 ]
机构
[1] Univ Virginia, Biocomplex Inst & Initiat, Charlottesville, VA 22904 USA
[2] Univ Virginia, Math Dept, Charlottesville, VA 22904 USA
[3] Town Ctr Four, Biocomplex Inst, 994 Res Pk Blvd, Charlottesville, VA 22911 USA
[4] Biocomplex Inst, POB 400298, Charlottesville, VA 22904 USA
关键词
topology; simplicial complex; homology; Mayer-Vietoris sequence; RNA; secondary structure; SPACES;
D O I
10.3390/math9151749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a topological framework of tau-structures to quantify the evolutionary transitions between two RNA sequence-structure pairs. tau-structures developed here consist of a pair of RNA secondary structures together with a non-crossing partial matching between the two backbones. The loop complex of a tau-structure captures the intersections of loops in both secondary structures. We compute the loop homology of tau-structures. We show that only the zeroth, first and second homology groups are free. In particular, we prove that the rank of the second homology group equals the number gamma of certain arc-components in a tau-structure and that the rank of the first homology is given by gamma-chi+1, where chi is the Euler characteristic of the loop complex.
引用
收藏
页数:22
相关论文
共 25 条
  • [1] [Anonymous], 1973, A Course in Simple-Homotopy Theory
  • [2] Riboswitches and the RNA World
    Breaker, Ronald R.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2012, 4 (02):
  • [3] Bura A.C., 2019, ARXIV190901222
  • [4] Weighted Homology of Bi-Structures over Certain Discrete Valuation Rings
    Bura, Andrei
    He, Qijun
    Reidys, Christian
    [J]. MATHEMATICS, 2021, 9 (07)
  • [5] Loop homology of bi-secondary structures
    Bura, Andrei C.
    He, Qijun
    Reidys, Christian M.
    [J]. DISCRETE MATHEMATICS, 2021, 344 (06)
  • [6] Dawson R.J.M., 1990, Cahiers Topologie Geom. Differentielle Categ., V31, P229
  • [7] Non-coding RNA genes and the modern RNA world
    Eddy, SR
    [J]. NATURE REVIEWS GENETICS, 2001, 2 (12) : 919 - 929
  • [8] Morse theory for cell complexes
    Forman, R
    [J]. ADVANCES IN MATHEMATICS, 1998, 134 (01) : 90 - 145
  • [9] Forman R., 2002, Sem. Lothar. Combin., V48, P35
  • [10] Fulton W., 1995, Algebraic Topology A First Course