Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates

被引:2410
作者
Eklund, Anders [1 ,2 ,3 ]
Nichols, Thomas E. [4 ,5 ]
Knutsson, Hans [1 ,3 ]
机构
[1] Linkoping Univ, Dept Biomed Engn, Div Med Informat, S-58185 Linkoping, Sweden
[2] Linkoping Univ, Dept Comp & Informat Sci, Div Stat & Machine Learning, S-58183 Linkoping, Sweden
[3] Linkoping Univ, Ctr Med Image Sci & Visualizat, S-58183 Linkoping, Sweden
[4] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[5] Univ Warwick, WMG, Coventry CV4 7AL, W Midlands, England
基金
美国国家科学基金会; 瑞典研究理事会; 英国惠康基金;
关键词
fMRI; statistics; false positives; cluster inference; permutation test; VOXEL-BASED MORPHOMETRY; GENERAL LINEAR-MODEL; PERMUTATION METHODS; SIZE INFERENCE; BRAIN-FUNCTION; RANDOM-FIELD; ACTIVATION; SOFTWARE; GENETICS; PROJECT;
D O I
10.1073/pnas.1602413113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The most widely used task functional magnetic resonance imaging (fMRI) analyses use parametric statistical methods that depend on a variety of assumptions. In this work, we use real resting-state data and a total of 3 million random task group analyses to compute empirical familywise error rates for the fMRI software packages SPM, FSL, and AFNI, as well as a nonparametric permutation method. For a nominal familywise error rate of 5%, the parametric statistical methods are shown to be conservative for voxelwise inference and invalid for clusterwise inference. Our results suggest that the principal cause of the invalid cluster inferences is spatial autocorrelation functions that do not follow the assumed Gaussian shape. By comparison, the nonparametric permutation test is found to produce nominal results for voxelwise as well as clusterwise inference. These findings speak to the need of validating the statistical methods being used in the field of neuroimaging.
引用
收藏
页码:7900 / 7905
页数:6
相关论文
共 44 条
  • [1] Voxel-based morphometry - The methods
    Ashburner, J
    Friston, KJ
    [J]. NEUROIMAGE, 2000, 11 (06) : 805 - 821
  • [2] SPM: A history
    Ashburner, John
    [J]. NEUROIMAGE, 2012, 62 (02) : 791 - 800
  • [3] Toward discovery science of human brain function
    Biswal, Bharat B.
    Mennes, Maarten
    Zuo, Xi-Nian
    Gohel, Suril
    Kelly, Clare
    Smith, Steve M.
    Beckmann, Christian F.
    Adelstein, Jonathan S.
    Buckner, Randy L.
    Colcombe, Stan
    Dogonowski, Anne-Marie
    Ernst, Monique
    Fair, Damien
    Hampson, Michelle
    Hoptman, Matthew J.
    Hyde, James S.
    Kiviniemi, Vesa J.
    Kotter, Rolf
    Li, Shi-Jiang
    Lin, Ching-Po
    Lowe, Mark J.
    Mackay, Clare
    Madden, David J.
    Madsen, Kristoffer H.
    Margulies, Daniel S.
    Mayberg, Helen S.
    McMahon, Katie
    Monk, Christopher S.
    Mostofsky, Stewart H.
    Nagel, Bonnie J.
    Pekar, James J.
    Peltier, Scott J.
    Petersen, Steven E.
    Riedl, Valentin
    Rombouts, Serge A. R. B.
    Rypma, Bart
    Schlaggar, Bradley L.
    Schmidt, Sein
    Seidler, Rachael D.
    Siegle, Greg J.
    Sorg, Christian
    Teng, Gao-Jun
    Veijola, Juha
    Villringer, Arno
    Walter, Martin
    Wang, Lihong
    Weng, Xu-Chu
    Whitfield-Gabrieli, Susan
    Williamson, Peter
    Windischberger, Christian
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) : 4734 - 4739
  • [4] Generic brain activation mapping in functional magnetic resonance imaging: A nonparametric approach
    Brammer, MJ
    Bullmore, ET
    Simmons, A
    Williams, SCR
    Grasby, PM
    Howard, RJ
    Woodruff, PWR
    RabeHesketh, S
    [J]. MAGNETIC RESONANCE IMAGING, 1997, 15 (07) : 763 - 770
  • [5] Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain
    Bullmore, ET
    Suckling, J
    Overmeyer, S
    Rabe-Hesketh, S
    Taylor, E
    Brammer, MJ
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (01) : 32 - 42
  • [6] The secret lives of experiments: Methods reporting in the fMRI literature
    Carp, Joshua
    [J]. NEUROIMAGE, 2012, 63 (01) : 289 - 300
  • [7] AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
    Cox, RW
    [J]. COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03): : 162 - 173
  • [8] Consistency and variability in functional localisers
    Duncan, Keith J.
    Pattamadilok, Chotiga
    Knierim, Iris
    Devlin, Joseph T.
    [J]. NEUROIMAGE, 2009, 46 (04) : 1018 - 1026
  • [9] BROCCOLI: Software for fast fMRI analysis on many-core CPUs and GPUs
    Eklund, Anders
    Dufort, Paul
    Villani, Mattias
    LaConte, Stephen
    [J]. FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [10] Medical image processing on the GPU - Past, present and future
    Eklund, Anders
    Dufort, Paul
    Forsberg, Daniel
    LaConte, Stephen M.
    [J]. MEDICAL IMAGE ANALYSIS, 2013, 17 (08) : 1073 - 1094