Untwisting twisted spectral triples

被引:4
作者
Goffeng, Magnus [1 ,2 ]
Mesland, Bram [3 ]
Rennie, Adam [1 ,2 ,4 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
[2] Univ Gothenburg, Gothenburg, Sweden
[3] Leiden Univ, Math Inst, Leiden, Netherlands
[4] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW, Australia
基金
瑞典研究理事会;
关键词
Twisted spectral triples; local index theory; KK-theory; noncommutative geometry; LOCAL INDEX FORMULA; CUNTZ-PIMSNER ALGEBRAS; NONCOMMUTATIVE GEOMETRY; FREDHOLM MODULES; CHERN CHARACTER; KMS STATES; HOMOLOGY;
D O I
10.1142/S0129167X19500769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the index data associated to twisted spectral triples and higher order spectral triples. In particular, we show that a Lipschitz regular twisted spectral triple can always be "logarithmically dampened" through functional calculus, to obtain an ordinary (i.e. untwisted) spectral triple. The same procedure turns higher order spectral triples into spectral triples. We provide examples of highly regular twisted spectral triples with nontrivial index data for which Moscovici's ansatz for a twisted local index formula is identically zero.
引用
收藏
页数:48
相关论文
共 53 条
[1]  
Anantharaman-Delaroche C., 1997, Operator Theory, Operator Algebras and Related Topics (Timisoara 1996), P17
[2]   Purely infinite C*-algebras arising from dynamical systems [J].
AnantharamanDelaroche, C .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1997, 125 (02) :199-225
[3]  
[Anonymous], 1998, MATH SCI RES I PUBLI
[4]  
[Anonymous], 2010, ARXIV10084617
[5]  
Baaj S., 1983, ACAD SCI PARIS SER 1, V296, P875
[6]   Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras [J].
Benameur, MT ;
Fack, T .
ADVANCES IN MATHEMATICS, 2006, 199 (01) :29-87
[7]   Index Theory and Topological Phases of Aperiodic Lattices [J].
Bourne, C. ;
Mesland, B. .
ANNALES HENRI POINCARE, 2019, 20 (06) :1969-2038
[8]   Unbounded Fredholm modules and spectral flow [J].
Carey, A ;
Phillips, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (04) :673-718
[9]   Index Theory for Locally Compact Noncommutative Geometries [J].
Carey, A. L. ;
Gayral, V. ;
Rennie, A. ;
Sukochev, F. A. .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 231 (1085) :1-+
[10]   Integration on locally compact noncommutative spaces [J].
Carey, A. L. ;
Gayral, V. ;
Rennie, A. ;
Sukochev, F. A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) :383-414