A comparison of distributed MPC schemes on a hydro-power plant benchmark

被引:28
作者
Maestre, J. M. [1 ]
Ridao, M. A. [1 ]
Kozma, A. [2 ]
Savorgnan, C. [2 ]
Diehl, M. [2 ,3 ]
Doan, M. D. [4 ]
Sadowska, A. [5 ]
Keviczky, T. [5 ]
De Schutter, B. [5 ]
Scheu, H. [6 ]
Marquardt, W. [6 ]
Valencia, F. [7 ]
Espinosa, J. [8 ]
机构
[1] Univ Seville, Dept Syst & Automat Engn, Seville 41092, Spain
[2] Katholieke Univ Leuven, Leuven, Belgium
[3] Univ Freiburg, D-79106 Freiburg, Germany
[4] Cantho Univ Technol, Can Tho, Vietnam
[5] Delft Univ Technol, Delft Ctr Syst & Control, Delft, Netherlands
[6] Rhein Westfal TH Aachen, AVT Proc Syst Engn, Aachen, Germany
[7] Solar Energy Res Ctr, Santiago, Chile
[8] Univ Nacl Colombia, Medellin, Colombia
关键词
distributed model predictive control; multi agent systems; hydro-power generation; MODEL-PREDICTIVE CONTROL; OPTIMIZATION;
D O I
10.1002/oca.2154
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we analyze and compare five distributed model predictive control (DMPC) schemes using a hydro-power plant benchmark. Besides being one of the most important sources of renewable power, hydro-power plants present very interesting control challenges. The operation of a hydro-power valley involves the coordination of several subsystems over a large geographical area in order to produce the demanded energy while satisfying constraints on water levels and flows. In particular, we test the different DMPC algorithms using a 24-h power tracking scenario in which the hydro-power plant is simulated with an accurate nonlinear model. In this way, it is possible to provide qualitative and quantitative comparisons between different DMPC schemes implemented on a common benchmark, which is a type of assessment rare in the literature. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:306 / 332
页数:27
相关论文
共 39 条
[1]  
Ackermann T, 1997, OPERATIONAL WATER MANAGEMENT, P285
[2]   A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark [J].
Alvarado, I. ;
Limon, D. ;
Munoz de la Pena, D. ;
Maestre, J. M. ;
Ridao, M. A. ;
Scheu, H. ;
Marquardt, W. ;
Negenborn, R. R. ;
De Schutter, B. ;
Valencia, F. ;
Espinosa, J. .
JOURNAL OF PROCESS CONTROL, 2011, 21 (05) :800-815
[3]  
[Anonymous], TECHNICAL REPORT
[4]   Optimization methods applied to renewable and sustainable energy: A review [J].
Banos, R. ;
Manzano-Agugliaro, F. ;
Montoya, F. G. ;
Gil, C. ;
Alcayde, A. ;
Gomez, J. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (04) :1753-1766
[5]   Optimization of large-scale hydropower system operations [J].
Barros, MTL ;
Tsai, FTC ;
Yang, SL ;
Lopes, JEG ;
Yeh, WWG .
JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2003, 129 (03) :178-188
[6]  
Bock H. G., 1984, P 9 IFAC WORLD C BUD, P243
[7]  
Camacho E.F., 2007, ADV TK CONT SIGN PRO, DOI 10.1007/978-0-85729-398-5
[8]  
Chow V. T., 1959, Open-channel Hydraulics
[9]  
COMPAS JM, 1994, PROCEEDINGS OF THE THIRD IEEE CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-3, P1643, DOI 10.1109/CCA.1994.381470
[10]   Intelligent control and optimization under uncertainty with application to hydro power [J].
Dantzig, GB ;
Infanger, G .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1997, 97 (02) :396-407