On existence and regularity of a terminal value problem for the time fractional diffusion equation

被引:19
作者
Nguyen Huy Tuan [1 ]
Tran Bao Ngoc [2 ]
Zhou, Yong [3 ,4 ]
O'Regan, Donal [5 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
[2] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[3] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
[4] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[5] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
关键词
existence and regularity; final value problem; time fractional derivative; uniqueness; BACKWARD PROBLEM; PARABOLIC PROBLEM; INVERSE PROBLEM; WELL-POSEDNESS; WAVE-EQUATIONS; WEAK SOLUTIONS; UNIQUENESS;
D O I
10.1088/1361-6420/ab730d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a final value problem for a diffusion equation with time-space fractional differentiation on a bounded domain D of Rk<i, k >= 1, which includes the fractional power L beta<i, 0 < beta <= 1, of a symmetric uniformly elliptic operator LL2(D). A representation of solutions is given by using the Laplace transform and the spectrum of L beta<i. We establish some existence and regularity results for our problem in both the linear and nonlinear case.
引用
收藏
页数:41
相关论文
共 63 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]   A Parabolic Problem with a Fractional Time Derivative [J].
Allen, Mark ;
Caffarelli, Luis ;
Vasseur, Alexis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (02) :603-630
[3]   Well-posedness results for a class of semi-linear super-diffusive equations [J].
Alvarez, Edgardo ;
Gal, Ciprian G. ;
Keyantuo, Valentin ;
Warma, Mahamadi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 181 :24-61
[4]  
[Anonymous], 1987, FRACTIONAL INTEGRALS
[5]   Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations [J].
Berkowitz, B ;
Klafter, J ;
Metzler, R ;
Scher, H .
WATER RESOURCES RESEARCH, 2002, 38 (10)
[6]   Doubly Nonlinear Equations of Porous Medium Type [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo ;
Scheven, Christoph .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) :503-545
[7]   Non local diffusion equations [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo ;
Signoriello, Stefano .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) :398-428
[8]   Optimal existence and uniqueness theory for the fractional heat equation [J].
Bonforte, Matteo ;
Sire, Yannick ;
Luis Vazquez, Juan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 153 :142-168
[9]   Quantitative local and global a priori estimates for fractional nonlinear diffusion equations [J].
Bonforte, Matteo ;
Luis Vazquez, Juan .
ADVANCES IN MATHEMATICS, 2014, 250 :242-284
[10]   PATHWISE SOLUTIONS OF SPDES DRIVEN BY HOLDER-CONTINUOUS INTEGRATORS WITH EXPONENT LARGER THAN 1/2 AND RANDOM DYNAMICAL SYSTEMS [J].
Chen, Yong ;
Gao, Hongjun ;
Garrido-Atienza, Maria J. ;
Schmalfuss, Bjoern .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (01) :79-98