Homogeneity of the spectrum for quasi-periodic Schrodinger operators

被引:17
作者
Damanik, David [1 ]
Goldstein, Michael [2 ]
Schlag, Wilhelm [3 ]
Voda, Mircea [3 ]
机构
[1] Rice Univ, Dept Math, 6100 S Main St, Houston, TX 77005 USA
[2] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
[3] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
关键词
Quasiperiodic Schrodinger operators; Anderson localization; homogeneous set; DENSITY-OF-STATES; HOLDER CONTINUITY; LYAPUNOV EXPONENT; POTENTIALS; EQUATIONS;
D O I
10.4171/JEMS/829
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the one-dimensional discrete Schrodinger operator [H(x,omega)phi](n) -phi(n - 1) -phi(n + 1) + V(x + n omega)phi(n), n is an element of Z, x, omega is an element of [0, 1], with real-analytic potential V(x). Assume L(E, omega) > 0 for all E. Let S-omega be the spectrum of H(x, omega). For all omega obeying the Diophantine condition omega is an element of T-c,T-a, we show the following: if S-omega boolean AND (E', E '') not equal empty set, then S-omega boolean AND (E', E '') is homogeneous in the sense of Carleson [Car83]. Furthermore, we prove that if G(i), i = 1, 2, are two gaps with 1 > vertical bar G(1)vertical bar >= vertical bar G(2)vertical bar, then vertical bar G(2)vertical bar less than or similar to exp (- (log dist(G(1), G(2)))(A)), A >> 1. Moreover, the same estimates hold for the gaps in the spectrum on a finite interval, that is, for S-N,S-omega := boolean OR(x is an element of T) spec H-[-N,H-N] (x, omega), N >= 1, where H-[-N,H- N](x, omega) is the Schrodinger operator restricted to the interval [-N, N] with Dirichlet boundary conditions. In particular, all these results hold for the almost Mathieu operator with vertical bar lambda vertical bar not equal 1. For the supercritical almost Mathieu operator, we combine the methods of [GS08] with Jitomirskaya's approach from [Jit99] to establish most of the results from [GS08] with omega obeying a strong Diophantine condition.
引用
收藏
页码:3073 / 3111
页数:39
相关论文
共 30 条
[1]   Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles [J].
Avila, Artur ;
Krikorian, Raphael .
ANNALS OF MATHEMATICS, 2006, 164 (03) :911-940
[2]   Global theory of one-frequency Schrodinger operators [J].
Avila, Artur .
ACTA MATHEMATICA, 2015, 215 (01) :1-54
[3]   Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential [J].
Bourgain, J ;
Jitomirskaya, S .
JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) :1203-1218
[4]   On the spectrum of lattice Schrodinger operators with deterministic potential [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :37-75
[5]  
BOURGAIN J., 2005, Ann. of Math. Stud., V158, DOI [10.1515/9781400837144, DOI 10.1515/9781400837144]
[6]  
Carleson L, 1981, C HARM AN HON ANT ZY, VII, P349
[7]   THE TRACE FORMULA FOR SCHRODINGER-OPERATORS ON THE LINE [J].
CRAIG, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 126 (02) :379-407
[8]   The spectrum of a Schrodinger operator with small quasi-periodic potential is homogeneous [J].
Damanik, David ;
Goldstein, Michael ;
Lukic, Milivoje .
JOURNAL OF SPECTRAL THEORY, 2016, 6 (02) :415-427
[9]   ON THE INVERSE SPECTRAL PROBLEM FOR THE QUASI-PERIODIC SCHRODINGER EQUATION [J].
Damanik, David ;
Goldstein, Michael .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2014, (119) :217-401
[10]   ALMOST PERIODIC SCHRODINGER-OPERATORS .3. THE ABSOLUTELY CONTINUOUS-SPECTRUM IN ONE DIMENSION [J].
DEIFT, P ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 90 (03) :389-411