Nonlinear Ion-Acoustic Waves in Degenerate Plasma with Landau Quantized Trapped Electrons

被引:9
作者
Jahangir, R. [1 ]
Ali, S. [1 ]
机构
[1] Natl Ctr Phys, Islamabad, Pakistan
关键词
ion acoustic wave; instability analysis; Landau quantization; electron trapping; Degenerate plasma; white dwarfs; DYNAMICAL PROPERTIES; SOLITARY WAVES; PLANE SOLITONS; STABILITY;
D O I
10.3389/fphy.2021.622820
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The formation of nonlinear ion-acoustic waves is studied in a degenerate magnetoplasma accounting for quantized and trapped electrons. Relying on the reductive perturbation technique, a three-dimensional Zakharov-Kuznetsov (ZK) equation is derived, admitting a solitary wave solution with modified amplitude and width parameters. The stability of the ZK equation is also discussed using the k-expansion method. Subsequently, numerical analyses are carried out for plasma parameters of a dense stellar system involving white dwarf stars. It has been observed that the quantized magnetic field parameter eta and degeneracy of electrons (determined by small temperature values T) affect the amplitude and width of the electric potential. The critical point at which the nature of the solitary structure changes from compressive to rarefaction is evaluated. Importantly, the growth rate of the instability associated with a three-dimensional ZK equation depends on the plasma parameters, and higher values of eta and T tend to stabilize the solitons in quantized degenerate plasmas. The results of the present study may hold significance to comprehend the properties of wave propagation and instability growth in stellar and laboratory dense plasmas.
引用
收藏
页数:9
相关论文
共 48 条
[1]   Linear and nonlinear ion-acoustic waves in an unmagnetized electron-positron-ion quantum plasma [J].
Ali, S. ;
Moslem, W. M. ;
Shukla, P. K. ;
Schlickeiser, R. .
PHYSICS OF PLASMAS, 2007, 14 (08)
[2]   Non-linear localized ion-acoustic waves in electron-positron-ion plasmas with trapped and non-thermal electrons [J].
Alinejad, H. .
ASTROPHYSICS AND SPACE SCIENCE, 2010, 325 (02) :209-215
[3]  
ALLEN M, 1995, J CELL BIOCHEM, P63, DOI 10.1017/S002237780001802X
[4]   Ion acoustic shock waves in a degenerate relativistic plasma with nuclei of heavy elements [J].
Atteya, A. ;
Behery, E. E. ;
El-Taibany, W. F. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (03)
[5]   Linear and nonlinear coupling of electromagnetic and electrostatic fluctuations with one dimensional trapping of electrons using product bi (r,q) distribution [J].
Aziz, Tahir ;
Masood, W. ;
Qureshi, M. N. S. ;
Shah, H. A. ;
Yoon, P. H. .
PHYSICS OF PLASMAS, 2016, 23 (06)
[6]   Environmental and biological applications of microplasmas [J].
Becker, K ;
Koutsospyros, A ;
Yin, SM ;
Christodoulatos, C ;
Abramzon, N ;
Joaquin, JC ;
Brelles-Mariño, G .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 :B513-B523
[7]   EXACT NONLINEAR PLASMA OSCILLATIONS [J].
BERNSTEIN, IB ;
GREENE, JM ;
KRUSKAL, MD .
PHYSICAL REVIEW, 1957, 108 (03) :546-550
[8]   Transverse stability of plane solitons using the variational method [J].
Bettinson, DC ;
Rowlands, G .
JOURNAL OF PLASMA PHYSICS, 1998, 59 :543-554
[9]   Quantum hydrodynamics for plasmas-Quo vadis? [J].
Bonitz, M. ;
Moldabekov, Zh A. ;
Ramazanov, T. S. .
PHYSICS OF PLASMAS, 2019, 26 (09)
[10]   Spin magnetohydrodynamics [J].
Brodin, G. ;
Marklund, M. .
NEW JOURNAL OF PHYSICS, 2007, 9