3-D stochastic finite elements for thermal creep analysis of piping structures with spatial material inhomogeneities

被引:5
作者
Appalanaidu, Y. [1 ]
Roy, Anindya [2 ]
Gupta, Sayan [1 ]
机构
[1] Indian Inst Technol Madras, Dept Appl Mech, Chennai 600036, Tamil Nadu, India
[2] Delft Univ Technol, Dept Civil Engn, Stevinweg 1,POB 5048, NL-2600 GA Delft, Netherlands
关键词
DAMAGE; BEAMS;
D O I
10.1007/s00707-017-1865-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A stochastic finite element-based methodology is developed for creep damage assessment in pipings carrying high-temperature fluids. The material properties are assumed to be spatially randomly inhomogeneous and are modelled as 3-D non-Gaussian fields. A spectral-based approach for random field discretization that preserves exactly the non-Gaussian characteristics is used in developing the stochastic finite element model. The meshing used in random field discretization is distinct from FE meshing, depends on the correlation characteristics of the random fields and is computationally efficient. The methodology enables estimating the failure probability and the most likely regions of failure in a section of a circular pipe.
引用
收藏
页码:3039 / 3062
页数:24
相关论文
共 21 条
[1]  
[Anonymous], 2000, Reliability assessment using stochastic finite element analysis
[2]  
[Anonymous], DESIGN OF CREEP
[3]  
Boyle JT, 1983, Stress Analysis for Creep
[4]   Polynomial chaos representation of spatio-temporal random fields from experimental measurements [J].
Das, Sonjoy ;
Ghanem, Roger ;
Finette, Steven .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) :8726-8751
[5]  
Der Kiureghian Armen, 1988, Probab. Eng. Mech., V3, P83, DOI [10.1016/0266-8920(88)90019-7, DOI 10.1016/0266-8920(88)90019-7]
[6]  
Ghanem R., 1991, STOCHASTIC FINITE EL, VVolume 1, P1, DOI [10.1007/978-1-4612-3094-6, DOI 10.1007/978-1-4612-3094-6]
[7]   CROSSINGS OF NON-GAUSSIAN TRANSLATION PROCESSES [J].
GRIGORIU, M .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1984, 110 (04) :610-620
[8]   Dynamic stiffness method for circular stochastic Timoshenko beams: Response variability and reliability analyses [J].
Gupta, S ;
Manohar, CS .
JOURNAL OF SOUND AND VIBRATION, 2002, 253 (05) :1051-1085
[9]  
Kachanov L, 1986, Introduction to Continuum Damage Mechanics, V10
[10]  
Kaminski M., 2013, STOCHASTIC PERTURBAT