ASSESSMENT RESULTS OF FLUID-STRUCTURE INTERACTION NUMERICAL SIMULATION USING FUZZY LOGIC

被引:3
|
作者
Markovic, Zoran J. [1 ]
Stupar, Slobodan N. [2 ]
Dinulovic, Mirko R. [2 ]
Pekovic, Ognjen M. [2 ]
Stefanovic, Predrag Lj. [1 ]
Cvetinovic, Dejan B. [1 ]
机构
[1] Univ Belgrade, Vinca Inst Nucl Sci, Lab Thermal Engn & Energy, Belgrade, Serbia
[2] Univ Belgrade, Dept Aerosp Engn, Fac Mech Engn, Belgrade, Serbia
来源
THERMAL SCIENCE | 2016年 / 20卷
关键词
thin-walled structure; fluid-structure interaction; fuzzy inference model; FINITE-ELEMENT-METHOD; NEURAL-NETWORKS; TURBULENCE MODELS; FLOW; SYSTEM; COMPUTATION; PREDICTION; PLATES;
D O I
10.2298/TSCI160111083M
中图分类号
O414.1 [热力学];
学科分类号
摘要
A fuzzy approximation concept is applied in order to predict results of coupled computational structure mechanics and computational fluid dynamics while solving a problem of steady incompressible gas flow through thermally loaded rectangular thin-walled channel. Channel wall deforms into wave-type shapes depending on thermal load and fluid inlet velocity inducing the changes of fluid flow accordingly. A set of fluid-structure interaction numerical tests have been defined by varying the values of fluid inlet velocity, temperature of inner and outer surface of the channel wall, and numerical grid density. The unsteady Navier-Stokes equations are numerically solved using an element-based finite volume method and second order backward Euler discretization scheme. The structural model is solved by finite element method including geometric and material non-linearities. The implicit two-way iterative code coupling, partitioned solution approach, were used while solving these numerical tests. Results of numerical analysis indicate that gravity and pressure distribution inside the channel contributes to triggering the shape of deformation. In the inverse problem, the results of fluid-structure interaction numerical simulations formed a database of input variables for development fuzzy logic based models considering downstream pressure drop and maximum stresses as the objective functions. Developed fuzzy models predicted targeting results within a reasonable accuracy limit at lower computation cost compared to series of fluid-structure interaction numerical calculations. Smaller relative difference were obtained when calculating the values of pressure drop then maximal stresses indicating that transfer function influence on output values have to be additionally investigated.
引用
收藏
页码:S235 / S250
页数:16
相关论文
共 50 条
  • [21] Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction
    Garnotel, Simon
    Salmon, Stephanie
    Baledent, Olivier
    INTRACRANIAL PRESSURE & NEUROMONITORING XVI, 2018, 126 : 255 - 259
  • [22] A numerical analysis on the hydrodynamic characteristics of net cages using coupled fluid-structure interaction model
    Bi, Chun-Wei
    Zhao, Yun-Peng
    Dong, Guo-Hai
    Zheng, Yan-Na
    Gui, Fu-Kun
    AQUACULTURAL ENGINEERING, 2014, 59 : 1 - 12
  • [23] Numerical Simulation of Low Reynolds Number Fluid-Structure Interaction with Immersed Boundary Method
    Ming Pingjian
    Zhang Wenping
    CHINESE JOURNAL OF AERONAUTICS, 2009, 22 (05) : 480 - 485
  • [24] Numerical simulation of two-way fluid-structure interaction of wind loading on buildings
    Wang, Qingyuan
    Zhang, Guomin
    Li, Wenyuan
    Shi, Long
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2020, 43 (03) : 225 - 240
  • [25] Parallel Fluid-Structure Interaction Simulation
    Chen, Meng-Huo
    COMPUTATIONAL SCIENCE, ICCS 2022, PT IV, 2022, : 297 - 309
  • [26] Numerical Simulation of Laminar Incompressible Fluid-Structure Interaction for Elastic Material with Point Constraints
    Razzaq, Mudassar
    Hron, Jaroslav
    Turek, Stefan
    ADVANCES IN MATHEMATICAL FLUID MECHANICS: DEDICATED TO GIOVANNI PAOLO GALDI ON THE OCCASION OF HIS 60TH BIRTHDAY, INTERNATIONAL CONFERENCE ON MATHEMATICAL FLUID MECHANICS, 2007, 2010, : 451 - +
  • [27] Numerical Simulation Program of an Elastic Membrane Considering the Fluid-Structure Interaction
    Liu Jian-Min
    Cai Zhen-Xiong
    INFORMATION COMPUTING AND APPLICATIONS, PT I, 2011, 243 : 643 - 650
  • [28] Multiphysics Modeling and Simulation of Fluid-structure interaction applied to biological problems
    Mihai, Felix
    Youn, Inja
    Seshaiyer, Padmanabhan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 615 - 623
  • [29] Fluid-structure interaction in crash simulation
    Meywerk, M
    Decker, F
    Cordes, J
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2000, 214 (D7) : 669 - 673
  • [30] Fluid-structure interaction simulation for performance prediction and design optimization of parafoils
    Zhu, Hong
    Sun, Qinglin
    Tao, Jin
    Sun, Hao
    Chen, Zengqiang
    Zeng, Xianyi
    Soulat, Damien
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2023, 17 (01)