Temperature as a Universal Resetting Cue for Mammalian Circadian Oscillators

被引:638
作者
Buhr, Ethan D. [1 ,2 ]
Yoo, Seung-Hee [1 ,2 ,3 ]
Takahashi, Joseph S. [1 ,2 ,3 ,4 ]
机构
[1] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA
[2] Northwestern Univ, Ctr Funct Genom, Evanston, IL 60208 USA
[3] Univ Texas SW Med Ctr Dallas, Dept Neurosci, Dallas, TX 75390 USA
[4] Univ Texas SW Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX 75390 USA
关键词
HEAT-SHOCK FACTOR-1; SUPRACHIASMATIC NUCLEUS; GENE-EXPRESSION; INDIVIDUAL FIBROBLASTS; REVEALS PERSISTENT; PERIPHERAL-TISSUES; BODY-TEMPERATURE; DNA-BINDING; CLOCK GENE; ENTRAINMENT;
D O I
10.1126/science.1195262
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Environmental temperature cycles are a universal entraining cue for all circadian systems at the organismal level with the exception of homeothermic vertebrates. We report here that resistance to temperature entrainment is a property of the suprachiasmatic nucleus (SCN) network and is not a cell-autonomous property of mammalian clocks. This differential sensitivity to temperature allows the SCN to drive circadian rhythms in body temperature, which can then act as a universal cue for the entrainment of cell-autonomous oscillators throughout the body. Pharmacological experiments show that network interactions in the SCN are required for temperature resistance and that the heat shock pathway is integral to temperature resetting and temperature compensation in mammalian cells. These results suggest that the evolutionarily ancient temperature resetting response can be used in homeothermic animals to enhance internal circadian synchronization.
引用
收藏
页码:379 / 385
页数:7
相关论文
共 50 条
  • [41] Quantitative analysis of circadian single cell oscillations in response to temperature
    Abraham, Ute
    Schlichting, Julia Katharina
    Kramer, Achim
    Herzel, Hanspeter
    PLOS ONE, 2018, 13 (01):
  • [42] Temperature-Sensitive and Circadian Oscillators of Neurospora crassa Share Components
    Hunt, Suzanne
    Elvin, Mark
    Heintzen, Christian
    GENETICS, 2012, 191 (01) : 119 - +
  • [43] Vasopressin deficiency provides evidence for separate circadian oscillators of activity and temperature
    Wideman, CH
    Murphy, HM
    Nadzam, GR
    PEPTIDES, 2000, 21 (06) : 811 - 816
  • [44] Midbrain raphe modulation of nonphotic circadian clock resetting and 5-HT release in the mammalian suprachiasmatic nucleus
    Glass, JD
    Grossman, GH
    Farnbauch, L
    DiNardo, L
    JOURNAL OF NEUROSCIENCE, 2003, 23 (20) : 7451 - 7460
  • [45] A systems theoretic approach to analysis and control of mammalian circadian dynamics
    Abel, John H.
    Doyle, Francis J., III
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 116 : 48 - 60
  • [46] Resetting of the hamster circadian system by dark pulses
    Canal, MM
    Piggins, HD
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2006, 290 (03) : R785 - R792
  • [47] Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons
    Webb, Alexis B.
    Angelo, Nikhil
    Huettner, James E.
    Herzog, Erik D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (38) : 16493 - 16498
  • [48] Steven A. Brown and the synchronization of circadian rhythms by body temperature cycles
    Schibler, Ueli
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2024, 60 (02) : 3891 - 3900
  • [49] Molecular architecture of the mammalian circadian clock
    Partch, Carrie L.
    Green, Carla B.
    Takahashi, Joseph S.
    TRENDS IN CELL BIOLOGY, 2014, 24 (02) : 90 - 99
  • [50] Molecular mechanism of mammalian circadian clock
    Isojima, Y
    Okumura, N
    Nagai, K
    JOURNAL OF BIOCHEMISTRY, 2003, 134 (06) : 777 - 784