Temperature as a Universal Resetting Cue for Mammalian Circadian Oscillators

被引:638
作者
Buhr, Ethan D. [1 ,2 ]
Yoo, Seung-Hee [1 ,2 ,3 ]
Takahashi, Joseph S. [1 ,2 ,3 ,4 ]
机构
[1] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA
[2] Northwestern Univ, Ctr Funct Genom, Evanston, IL 60208 USA
[3] Univ Texas SW Med Ctr Dallas, Dept Neurosci, Dallas, TX 75390 USA
[4] Univ Texas SW Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX 75390 USA
关键词
HEAT-SHOCK FACTOR-1; SUPRACHIASMATIC NUCLEUS; GENE-EXPRESSION; INDIVIDUAL FIBROBLASTS; REVEALS PERSISTENT; PERIPHERAL-TISSUES; BODY-TEMPERATURE; DNA-BINDING; CLOCK GENE; ENTRAINMENT;
D O I
10.1126/science.1195262
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Environmental temperature cycles are a universal entraining cue for all circadian systems at the organismal level with the exception of homeothermic vertebrates. We report here that resistance to temperature entrainment is a property of the suprachiasmatic nucleus (SCN) network and is not a cell-autonomous property of mammalian clocks. This differential sensitivity to temperature allows the SCN to drive circadian rhythms in body temperature, which can then act as a universal cue for the entrainment of cell-autonomous oscillators throughout the body. Pharmacological experiments show that network interactions in the SCN are required for temperature resistance and that the heat shock pathway is integral to temperature resetting and temperature compensation in mammalian cells. These results suggest that the evolutionarily ancient temperature resetting response can be used in homeothermic animals to enhance internal circadian synchronization.
引用
收藏
页码:379 / 385
页数:7
相关论文
共 50 条
  • [31] Regulation and function of extra-SCN circadian oscillators in the brain
    Begemann, Kimberly
    Neumann, Anne-Marie
    Oster, Henrik
    ACTA PHYSIOLOGICA, 2020, 229 (01)
  • [32] The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm
    Honma, Sato
    JOURNAL OF PHYSIOLOGICAL SCIENCES, 2018, 68 (03) : 207 - 219
  • [33] The clock shop: Coupled circadian oscillators
    Granados-Fuentes, Daniel
    Herzog, Erik D.
    EXPERIMENTAL NEUROLOGY, 2013, 243 : 21 - 27
  • [34] Intrinsic role of polysialylated neural cell adhesion molecule in photic phase resetting of the mammalian circadian clock
    Prosser, RA
    Rutishauser, U
    Ungers, G
    Fedorkova, L
    Glass, JD
    JOURNAL OF NEUROSCIENCE, 2003, 23 (02) : 652 - 658
  • [35] Social information as an entrainment cue for the circadian clock
    Petrillo, Chiara Costa
    Pirez, Nicolas
    Beckwith, Esteban J.
    GENETICS AND MOLECULAR BIOLOGY, 2024, 47
  • [36] Central control of peripheral circadian oscillators
    Menaker, Michael
    Murphy, Zachary C.
    Sellix, Michael T.
    CURRENT OPINION IN NEUROBIOLOGY, 2013, 23 (05) : 741 - 746
  • [37] Differentiating external zeitgeber impact on peripheral circadian clock resetting
    Heyde, Isabel
    Oster, Henrik
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [38] CIRCADIAN OSCILLATORS IN THE EPITHALAMUS
    Guilding, C.
    Hughes, A. T. L.
    Piggins, H. D.
    NEUROSCIENCE, 2010, 169 (04) : 1630 - 1639
  • [39] Intercellular coupling between peripheral circadian oscillators by TGF-β signaling
    Finger, Anna-Marie
    Jaeschke, Sebastian
    del Olmo, Marta
    Hurwitz, Robert
    Granada, Adrian E.
    Herzel, Hanspeter
    Kramer, Achim
    SCIENCE ADVANCES, 2021, 7 (30)
  • [40] RETRACTED: Calcium and SOL Protease Mediate Temperature Resetting of Circadian Clocks (Retracted article. See vol. 171, pg. 256, 2017)
    Tataroglu, Ozgur
    Zhao, Xiaohu
    Busza, Ania
    Ling, Jinli
    O'Neill, John S.
    Emery, Patrick
    CELL, 2015, 163 (05) : 1214 - 1224