Explaining Sentiment Classification

被引:4
作者
Rajwadi, Marvin [1 ,2 ]
Glackin, Cornelius [2 ]
Wall, Julie [1 ]
Chollet, Gerard [2 ]
Cannings, Nigel [2 ]
机构
[1] Univ East London, Sch Architecture Comp & Engn, London, England
[2] Intelligent Voice Ltd, London, England
来源
INTERSPEECH 2019 | 2019年
基金
“创新英国”项目;
关键词
Explainability; Interpretability; Sentiment Classification; 1-D Convolutional Neural Networks;
D O I
10.21437/Interspeech.2019-2743
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
This paper presents a novel 1-D sentiment classifier trained on the benchmark IMDB dataset. The classifier is a 1-D convolutional neural network with repeated convolution and max pooling layers. The main contribution of this work is the demonstration of a deconvolution technique for 1-D convolutional neural networks that is agnostic to specific architecture types. This deconvolution technique enables text classification to be explained, a feature that is important for NLP-based decision support systems, as well as being an invaluable diagnostic tool.
引用
收藏
页码:56 / 60
页数:5
相关论文
共 34 条
[1]   "What is relevant in a text document?": An interpretable machine learning approach [J].
Arras, Leila ;
Horn, Franziska ;
Montavon, Gregoire ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2017, 12 (08)
[2]  
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
[3]  
Bird S., 2009, Natural language processing with Python: analyzing text with the natural language toolkit
[4]  
Bojarski M., 2017, ARXIV
[5]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[6]  
European Union, 2016, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation), VL 110, P1
[7]  
Gao S., 2018, REP4NLP ACL
[8]  
Gehring J, 2017, Arxiv, DOI arXiv:1705.03122
[9]  
Gilpin LH, 2019, Arxiv, DOI [arXiv:1806.00069, DOI 10.48550/ARXIV.1806.00069]
[10]  
Howard J, 2018, Arxiv, DOI arXiv:1801.06146