Characters of groups having fixed-point-free automorphisms of 2-power order

被引:1
作者
Isaacs, I. M. [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Fixed-point-free automorphism; Almost-invariant character;
D O I
10.1016/j.jalgebra.2010.05.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a cyclic 2-group that acts fixed-point-freely on a group K and let T subset of C be the subgroup of index 2. The main result of this paper is that the square-free parts of the degrees of the T-invariant irreducible characters of K are never divisible by primes p equivalent to -1 mod vertical bar C vertical bar. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 229
页数:12
相关论文
共 4 条
[1]  
Isaacs I. M., 2008, GRAD STUD MATH, V92
[2]  
Isaacs I. M., 2006, CHARACTER THEORY FIN
[3]   CHARACTERS OF SOLVABLE AND SYMPLECTIC GROUPS [J].
ISAACS, IM .
AMERICAN JOURNAL OF MATHEMATICS, 1973, 95 (03) :594-635
[4]   Constituents of restricted and induced characters in odd order groups [J].
Isaacs, IM .
JOURNAL OF ALGEBRA, 1995, 178 (03) :991-1001