Genome-Wide Identification of HrpL-Regulated Genes in the Necrotrophic Phytopathogen Dickeya dadantii 3937

被引:25
作者
Yang, Shihui [1 ]
Peng, Quan [1 ]
Zhang, Qiu [1 ]
Zou, Lifang [1 ]
Li, Yan [1 ,2 ]
Robert, Christelle [3 ]
Pritchard, Leighton [3 ]
Liu, Hui [3 ]
Hovey, Raymond [1 ]
Wang, Qi [2 ]
Birch, Paul [3 ]
Toth, Ian K. [3 ]
Yang, Ching-Hong [1 ]
机构
[1] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53201 USA
[2] China Agr Univ, Dept Plant Pathol, Beijing 100094, Peoples R China
[3] Scottish Crop Res Inst, Dundee DD2 5DA, Scotland
基金
美国国家科学基金会;
关键词
III SECRETION SYSTEM; EFFECTOR PROTEINS; ADENYLATE-CYCLASE; ERWINIA-AMYLOVORA; TRANSLOCATION; VIRULENCE; EXPRESSION; ERWINIA-CHRYSANTHEMI-3937; PATHOGENICITY; PECTINOLYSIS;
D O I
10.1371/journal.pone.0013472
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Dickeya dadantii is a necrotrophic pathogen causing disease in many plants. Previous studies have demonstrated that the type III secretion system (T3SS) of D. dadantii is required for full virulence. HrpL is an alternative sigma factor that binds to the hrp box promoter sequence of T3SS genes to up-regulate their expression. Methodology/Principal Findings: To explore the inventory of HrpL-regulated genes of D. dadantii 3937 (3937), transcriptome profiles of wild-type 3937 and a hrpL mutant grown in a T3SS-inducing medium were examined. Using a cutoff value of 1.5, significant differential expression was observed in sixty-three genes, which are involved in various cellular functions such as type III secretion, chemotaxis, metabolism, regulation, and stress response. A hidden Markov model (HMM) was used to predict candidate hrp box binding sites in the intergenic regions of 3937, including the promoter regions of HrpL-regulated genes identified in the microarray assay. In contrast to biotrophic phytopathgens such as Pseudomonas syringae, among the HrpL up-regulated genes in 3937 only those within the T3SS were found to contain a hrp box sequence. Moreover, direct binding of purified HrpL protein to the hrp box was demonstrated for hrp box-containing DNA fragments of hrpA and hrpN using the electrophoretic mobility shift assay (EMSA). In this study, a putative T3SS effector DspA/E was also identified as a HrpL-upregulated gene, and shown to be translocated into plant cells in a T3SS-dependent manner. Conclusion/Significances: We provide the genome-wide study of HrpL-regulated genes in a necrotrophic phytopathogen (D. dadantii 3937) through a combination of transcriptomics and bioinformatics, which led to identification of several effectors. Our study indicates the extent of differences for T3SS effector protein inventory requirements between necrotrophic and biotrophic pathogens, and may allow the development of different strategies for disease control for these different groups of pathogens.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Type III secretion system effector proteins: Double agents in bacterial disease and plant defense [J].
Alfano, JR ;
Collmer, A .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :385-414
[2]   ERWINIA-CHRYSANTHEMI HRP GENES AND THEIR INVOLVEMENT IN SOFT-ROT PATHOGENESIS AND ELICITATION OF THE HYPERSENSITIVE RESPONSE [J].
BAUER, DW ;
BOGDANOVE, AJ ;
BEER, SV ;
COLLMER, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1994, 7 (05) :573-581
[3]   ERWINIA-CHRYSANTHEMI HARPIN(ECH) - AN ELICITOR OF THE HYPERSENSITIVE RESPONSE THAT CONTRIBUTES TO SOFT-ROT PATHOGENESIS [J].
BAUER, DW ;
WEI, ZM ;
BEER, SV ;
COLLMER, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1995, 8 (04) :484-491
[4]  
Bocsanczy AM, 2008, MOL PLANT PATHOL, V9, P425, DOI [10.1111/j.1364-3703.2008.00471.x, 10.1111/J.1364-3703.2008.00471.X]
[5]   Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato [J].
Bogdanove, AJ ;
Kim, JF ;
Wei, ZM ;
Kolchinsky, P ;
Charkowski, AO ;
Conlin, AK ;
Collmer, A ;
Beer, SV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (03) :1325-1330
[6]   The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi [J].
Bouley, J ;
Condemine, G ;
Shevchik, VE .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 308 (02) :205-219
[7]   Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria [J].
Brencic, A ;
Winans, SC .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2005, 69 (01) :155-+
[8]   Who comes first?: How plant pathogenic bacteria orchestrate type III secretion [J].
Büttner, D ;
Bonas, U .
CURRENT OPINION IN MICROBIOLOGY, 2006, 9 (02) :193-200
[9]   Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems [J].
Cambronne, Eric D. ;
Roy, Craig R. .
TRAFFIC, 2006, 7 (08) :929-939
[10]   Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells [J].
Casper-Lindley, C ;
Dahlbeck, D ;
Clark, ET ;
Staskawicz, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :8336-8341