A Parabolic Flow of Pluriclosed Metrics

被引:159
作者
Streets, Jeffrey [1 ]
Tian, Gang [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
KAHLER-RICCI FLOW; SURFACES;
D O I
10.1093/imrn/rnp237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a parabolic flow of pluriclosed metrics. This flow is of the same family introduced by the authors in [15]. We study the relationship of the existence of the flow and associated static metrics to topological information on the underlying complex manifold. Solutions to the static equation are automatically Hermitian-symplectic, a condition we define herein. These static metrics are classified on K3 surfaces, complex toroidal surfaces, nonminimal Hopf surfaces, surfaces of general type, and class VII+ surfaces. To finish, we discuss how the flow may potentially be used to study the topology of class VII+ surfaces.
引用
收藏
页码:3101 / 3133
页数:33
相关论文
共 20 条
  • [1] [Anonymous], ARXIV09094898
  • [2] Barth W., 2000, SERIES MODERN SURVEY
  • [3] BOGOMOLOV FA, 1976, MATH USSR IZV+, V10, P255, DOI 10.1070/IM1976v010n02ABEH001688
  • [4] BOGOMOLOV FA, 1982, MATH USSR IZV+, V46, P31
  • [5] On compact Kahler surfaces
    Buchdahl, N
    [J]. ANNALES DE L INSTITUT FOURIER, 1999, 49 (01) : 287 - +
  • [6] Delanoe P, 1996, OSAKA J MATH, V33, P829
  • [7] Class VII0 surfaces with b2 curves
    Dloussky, G
    Oeljeklaus, K
    Toma, M
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (02) : 283 - 309
  • [8] Donaldson S., 2006, Nankai Tracts in Mathematics, V11, P153
  • [9] GAUDUCHON P, 1977, CR ACAD SCI A MATH, V285, P387
  • [10] ON STRUCTURE OF COMPACT COMPLEX ANALYTIC SURFACES .I.
    KODAIRA, K
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (04) : 751 - &