Golay complementary array pairs

被引:44
作者
Jedwab, Jonathan
Parker, Matthew G.
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] Univ Bergen, Ctr High Technol, Dept Informat, N-5020 Bergen, Norway
关键词
array; binary; complementary; complex-valued; construction; Golay; multi-dimensional; nonexistence; sequence;
D O I
10.1007/s10623-007-9088-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Constructions and nonexistence conditions for multi-dimensional Golay complementary array pairs are reviewed. A construction for a d-dimensional Golay array pair from a (d + 1)-dimensional Golay array pair is given. This is used to explain and expand previously known constructive and nonexistence results in the binary case.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 1962, PROC IRE
[2]  
Borwein PB, 2004, MATH COMPUT, V73, P967, DOI 10.1090/S0025-5718-03-01576-X
[3]   NEW COMPLEMENTARY PAIRS OF SEQUENCES [J].
BUDISIN, SZ .
ELECTRONICS LETTERS, 1990, 26 (13) :881-883
[4]   Further explorations into ternary complementary pairs [J].
Craigen, R. ;
Georgiou, S. ;
Gibson, Will ;
Koukouvinos, C. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (06) :952-965
[5]   Complex Golay sequences: structure and applications [J].
Craigen, R ;
Holzmann, W ;
Kharaghani, H .
DISCRETE MATHEMATICS, 2002, 252 (1-3) :73-89
[6]   A theory of ternary complementary pairs [J].
Craigen, R ;
Koukouvinos, C .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 96 (02) :358-375
[7]   Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes [J].
Davis, JA ;
Jedwab, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) :2397-2417
[8]   Proof of the Barker array conjecture [J].
Davis, James A. ;
Jedwab, Jonathan ;
Smith, Ken W. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (07) :2011-2018
[9]  
Dymond M., 1992, THESIS U LONDON LOND
[10]   ON GOLAY POLYNOMIAL PAIRS [J].
ELIAHOU, S ;
KERVAIRE, M ;
SAFFARI, B .
ADVANCES IN APPLIED MATHEMATICS, 1991, 12 (03) :235-292