Bayesian leading indicators: Measuring and predicting economic conditions in Iowa

被引:77
作者
Otrok, C [1 ]
Whiteman, CH [1 ]
机构
[1] Univ Iowa, Iowa City, IA 52242 USA
关键词
D O I
10.2307/2527349
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper designs and implements a Bayesian dynamic latent factor model for a Vector of data describing the Iowa economy. Posterior distributions of parameters and the latent factor are analyzed by Markov Chain Monte Carlo methods, and coincident and leading indicators are computed by using posterior mean values of current and predictive distributions for the latent factor.
引用
收藏
页码:997 / 1014
页数:18
相关论文
共 18 条
[1]  
Burns ArthurF., 1947, MEASURING BUSINESS C
[2]   BAYES INFERENCE IN REGRESSION-MODELS WITH ARMA (P, Q) ERRORS [J].
CHIB, S ;
GREENBERG, E .
JOURNAL OF ECONOMETRICS, 1994, 64 (1-2) :183-206
[3]   Markov chain Monte Carlo simulation methods in econometrics [J].
Chib, S ;
Greenberg, E .
ECONOMETRIC THEORY, 1996, 12 (03) :409-431
[4]   UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM [J].
CHIB, S ;
GREENBERG, E .
AMERICAN STATISTICIAN, 1995, 49 (04) :327-335
[5]  
CHIB S, 1990, BAYESIAN LIKELIHOOD
[6]   Measuring the pricing error of the arbitrage pricing theory [J].
Geweke, J ;
Zhou, GF .
REVIEW OF FINANCIAL STUDIES, 1996, 9 (02) :557-587
[7]  
Geweke J., 1997, ADV EC ECONOMETRICS, V3, P128
[8]  
Geweke J., 1996, Handbook of Computational Economics, V1, P731
[9]  
Geweke J., 1992, BAYESIAN STAT, V4
[10]  
*I EC RES, 1990, IOW EC FOR