Adaptive finite element method for the sound wave problems in two kinds of media

被引:15
作者
Wang, Hao [1 ]
Yang, Wei [1 ]
Huang, Yunqing [2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Hunan, Peoples R China
关键词
Helmholtz equations; Perfectly matched layers; A posteriori error estimator; Adaptive finite element methods; PERFECTLY MATCHED LAYER; HELMHOLTZ-EQUATION; SCATTERING PROBLEMS; DIFFERENCE METHODS; MESHLESS METHOD; APPROXIMATION; CONVERGENCE; ABSORPTION; SOLITONS; VERSION;
D O I
10.1016/j.camwa.2019.07.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the adaptive finite element method for sound wave propagation problems in two kinds of media, which are the linear anisotropic acoustic materials (the cloak metamaterials and penetrable media) and the nonlinear acoustic materials. A posteriori error estimator based on the new flux recovery technique and a residual type posteriori error estimator are proposed. Based on our a posteriori error estimators, the adaptive finite element algorithm is given for numerical simulations of the Helmholtz equations in different media. Extensive numerical results demonstrate the effectiveness of the adaptive algorithm. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:789 / 801
页数:13
相关论文
共 57 条
[1]   A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution [J].
Babuska, I ;
Ihlenburg, F ;
Paik, ET ;
Sauter, SA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 128 (3-4) :325-359
[2]   Simulations of the nonlinear Helmholtz equation: arrest of beam collapse, nonparaxial solitons and counter-propagating beams [J].
Baruch, G. ;
Fibich, G. ;
Tsynkov, Semyon .
OPTICS EXPRESS, 2008, 16 (17) :13323-13329
[3]   Perfectly matched layers for the convected Helmholtz equation [J].
Bécache, E ;
Bonnet-Ben Dhia, AS ;
Legendre, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (01) :409-433
[4]   Three-dimensional perfectly matched layer for the absorption of electromagnetic waves [J].
Berenger, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (02) :363-379
[5]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[6]  
Centeno E., 2000, PHYS REV B, V62, P614
[7]  
Chen L., 2008, IFEM INNOVATIVE FINI
[8]   A Source Transfer Domain Decomposition Method For Helmholtz Equations in Unbounded Domain Part II: Extensions [J].
Chen, Zhiming ;
Xiang, Xueshuang .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (03) :538-555
[9]   CONVERGENCE OF THE UNIAXIAL PERFECTLY MATCHED LAYER METHOD FOR TIME-HARMONIC SCATTERING PROBLEMS IN TWO-LAYERED MEDIA [J].
Chen, Zhiming ;
Zheng, Weiying .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (06) :2158-2185
[10]  
Chen ZM, 2009, COMMUN COMPUT PHYS, V5, P546