Cheeger type Sobolev spaces for metric space targets

被引:19
作者
Ohta, SI [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Sobolev space; metric space; Dirichlet problem;
D O I
10.1023/A:1026359313080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the natural generalization of Cheeger type Sobolev spaces to maps into a metric space. We solve Dirichlet problem for CAT(0)-space targets, and obtain some results about the relation between Cheeger type Sobolev spaces for maps into a Banach space and those for maps into a subset of that Banach space. We also prove the minimality of upper pointwise Lipschitz constant functions for locally Lipschitz maps into an Alexandrov space of curvature bounded above.
引用
收藏
页码:149 / 175
页数:27
相关论文
共 25 条
  • [1] GENERALIZED RIEMANNIAN SPACES
    ALEKSANDROV, AD
    BERESTOVSKII, VN
    NIKOLAEV, IG
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1986, 41 (03) : 1 - 54
  • [2] Ambrosio L., 1990, Ann. Sc. Norm. Super. Pisa Cl. Sci. 4, V17, P439
  • [3] SOBOLEV INEQUALITIES ON HOMOGENEOUS SPACES
    BIROLI, M
    MOSCO, U
    [J]. POTENTIAL ANALYSIS, 1995, 4 (04) : 311 - 324
  • [4] BIROLI M, 1995, ATTI ACCAD NAZ LINCE, V6, P37
  • [5] Bridson M.R., 1999, METRIC SPACES NONPOS
  • [6] Burago D., 2001, COURSE METRIC GEOMET
  • [7] Differentiability of Lipschitz functions on metric measure spaces
    Cheeger, J
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) : 428 - 517
  • [8] Cheeger J, 2000, J DIFFER GEOM, V54, P37
  • [9] Evans L. C., 2018, Measure Theory and Fine Properties of Functions
  • [10] Federer H., 2014, GEOMETRIC MEASURE TH