Rigidity and Non-local Connectivity of Julia Sets of Some Quadratic Polynomials

被引:13
作者
Levin, Genadi [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
关键词
LOCAL CONNECTIVITY; UNICRITICAL POLYNOMIALS; REAL POLYNOMIALS; PERIODIC-ORBITS; DYNAMICS; HYPERBOLICITY; MANDELBROT; DENSITY; RAYS; MAPS;
D O I
10.1007/s00220-011-1228-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For an infinitely renormalizable quadratic map f(c) : z -> z(2) + c with the sequence of renormalization periods {k (m) } and rotation numbers {t (m) = p (m) /q (m) }, we prove that if lim sup k(m)(-1) log vertical bar p(m)vertical bar > 0, then the Mandelbrot set is locally connected at c. We prove also that if lim sup vertical bar t(m+1)vertical bar(1/qm) < 1 and q (m) -> a, then the Julia set of f (c) is not locally connected and the Mandelbrot set is locally connected at c provided that all the renormalizations are non-primitive (satellite). This quantifies a construction of A. Douady and J. Hubbard, and weakens a condition proposed by J. Milnor.
引用
收藏
页码:295 / 328
页数:34
相关论文
共 54 条
[1]  
[Anonymous], 1952, CONFORMAL MAPPINGS
[2]  
[Anonymous], 1994, ANN MATH STUDIES
[3]   Combinatorial rigidity for unicritical polynomials [J].
Avila, Artur ;
Kahn, Jeremy ;
Lyubich, Mikhail ;
Shen, Weixiao .
ANNALS OF MATHEMATICS, 2009, 170 (02) :783-797
[4]  
Buff X., 2009, COMMUNICATION
[5]   ORDERED ORBITS OF THE SHIFT, SQUARE ROOTS, AND THE DEVILS STAIRCASE [J].
BULLETT, S ;
SENTENAC, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 :451-481
[6]  
Carleson L., 1991, Complex Dynamics
[7]  
Cheritat A., 1999, ESTIMATES SPEED EXPL
[8]  
DEMELO W, 1993, ERGEBNISSE SERIES, V25
[9]  
DOUADY A, 1985, ANN SCI ECOLE NORM S, V18, P287
[10]  
DOUADY A, 1986, CHAOTIC DYNAMICS FRA, P155