On the Singular Solutions of the Korteweg-de Vries Equation

被引:6
作者
Pokhozhaev, S. I. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
Korteweg-de Vries equation; singular solution; Cauchy problem; traveling wave; nonlinear capacity; Holder inequality;
D O I
10.1134/S0001434610110131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider two classes of singular solutions of the KdV equation: singular solutions of the Cauchy problem and singular traveling waves. In both cases, we establish sufficient conditions for their existence.
引用
收藏
页码:741 / 747
页数:7
相关论文
共 50 条
[41]   Exact boundary controllability for Korteweg-de Vries equation [J].
Salem, Ali .
INTELLIGENT SYSTEMS AND AUTOMATION, 2009, 1107 :231-236
[42]   On the cauchy problem for the generalized Korteweg-de Vries equation [J].
Molinet, L ;
Ribaud, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (11-12) :2065-2091
[43]   The Korteweg-de Vries equation on the half-line [J].
Fokas, Athanassios S. ;
Himonas, A. Alexandrou ;
Mantzavinos, Dionyssios .
NONLINEARITY, 2016, 29 (02) :489-527
[44]   DISPERSIVE SCHEMES FOR THE CRITICAL KORTEWEG-DE VRIES EQUATION [J].
Audiard, Corentin .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (14) :2603-2646
[45]   Determination of an unknown coefficient in the Korteweg-de Vries equation [J].
Sang, Lin ;
Qiao, Yan ;
Wu, Hua .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (06) :1277-1289
[46]   A nonlinear inverse problem of the Korteweg-de Vries equation [J].
Lu, Shengqi ;
Chen, Miaochao ;
Liu, Qilin .
BULLETIN OF MATHEMATICAL SCIENCES, 2019, 9 (03)
[47]   The initial-boundary value problem for the Korteweg-de Vries equation [J].
Holmer, Justin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (08) :1151-1190
[48]   Control and stabilization of the periodic fifth order Korteweg-de Vries equation [J].
Flores, Cynthia ;
Smith, Derek L. .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
[49]   Primitive solutions of the Korteweg–de Vries equation [J].
S. A. Dyachenko ;
P. Nabelek ;
D. V. Zakharov ;
V. E. Zakharov .
Theoretical and Mathematical Physics, 2020, 202 :334-343
[50]   Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods [J].
Carillo, Sandra ;
Schiebold, Cornelia .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)