Behavioral Modeling of Nonlinear Power Amplifiers Using Spiking Neural Networks

被引:1
|
作者
Wang, Siqi [1 ]
Ferreira, Pietro Maris
Benlarbi-Delai, Aziz
机构
[1] Sorbonne Univ, Lab Genie Elect & Elect Paris, CNRS, F-75252 Paris, France
来源
2022 20TH IEEE INTERREGIONAL NEWCAS CONFERENCE (NEWCAS) | 2022年
关键词
Device modeling; memory effects; nonlinear distortion; power amplifiers; spiking neurons; MEMORY POLYNOMIAL MODEL; DIGITAL PREDISTORTION; NEURONS;
D O I
10.1109/NEWCAS52662.2022.9842167
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel way for power amplifiers (PA) modeling using spiking neurons. The rate of neurons firing spikes is a nonlinear function of its excitation current. Taking the firing rate as the output and the excitation current as the input of a one-layer spiking neuron network, we build up a PA behavioral model with low nonlinearity order to mimic its strong nonlinearity. The results of modeling two Doherty PA show that the proposed method can reach better performance but with lower computational complexity compared with traditional methods. This is the first time that the nonlinearity property of spiking neurons are used for processing such nonlinear signals. Future work is to develop a complete system for the training of the spiking neural networks and to explore the application of spiking neural networks on real-time PA linearization.
引用
收藏
页码:495 / 499
页数:5
相关论文
共 50 条
  • [1] Nonlinear behavioral modeling of power amplifiers using radial-basis function neural networks
    Isaksson, M
    Wisell, D
    Rönnow, D
    2005 IEEE MTT-S International Microwave Symposium, Vols 1-4, 2005, : 1967 - 1970
  • [2] NONLINEAR BEHAVIORAL OF GaN DOHERTY POWER AMPLIFIERS USING NEURAL MODELING
    Liu, Haiwen
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2010, 52 (02) : 307 - 309
  • [3] Behavioral modeling of power amplifiers using fully recurrent neural networks
    Luongvinh, D
    Kwon, Y
    2005 IEEE MTT-S International Microwave Symposium, Vols 1-4, 2005, : 1979 - 1982
  • [4] Behavioral Modeling of Power Amplifiers With Dynamic Fuzzy Neural Networks
    Zhai, Jianfeng
    Zhou, Jianyi
    Zhang, Lei
    Hong, Wei
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2010, 20 (09) : 528 - 530
  • [5] Predistortion of Nonlinear High-Power Amplifiers Using Neural Networks
    Yang, Jiantao
    Gao, Jun
    Deng, Xiaotao
    Yang, Ming
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 1696 - 1699
  • [6] Nonlinear Modeling of GaN Doherty Power Amplifiers Using Radial-Basis Function Neural Networks
    Tong, Fu
    Liu, Haiwen
    Li, Xiaohua
    Li, Wenming
    Zhang, Qijun
    APMC: 2008 ASIA PACIFIC MICROWAVE CONFERENCE (APMC 2008), VOLS 1-5, 2008, : 2535 - +
  • [7] Behavioral Modeling and Digital Predistortion Linearization for Wideband RF Power Amplifiers with Neural Networks
    Liu, Taijun
    9TH INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, VOL. 1, (ICMMT 2016), 2016, : 316 - 316
  • [8] Behavioral modeling of nonlinear RF power amplifiers using ensemble SDBCC network
    Xie, Liping
    Wei, Haikun
    Zhang, Kanjian
    NEUROCOMPUTING, 2015, 154 : 24 - 32
  • [9] Behavioral Modeling of GaN Doherty Power Amplifiers Using Memoryless Polar Domain Functions and Deep Neural Networks
    Khawam, Yahya
    Hammi, Oualid
    Albasha, Lutfi
    Mir, Hasan
    IEEE ACCESS, 2020, 8 : 202707 - 202715
  • [10] Behavioral Modeling and Digital Predistortion of Power Amplifiers with Memory using Two Hidden Layers Artificial Neural Networks
    Mkadem, Farouk
    Ayed, Morsi B.
    Boumaiza, Slim
    Wood, John
    Aaen, Peter
    2010 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (MTT), 2010, : 656 - 659