Discrete squeezed states for finite-dimensional spaces

被引:17
作者
Marchiolli, Marcelo A. [1 ]
Ruzzi, Maurizio [1 ]
Galetti, Diogenes [1 ]
机构
[1] Univ Estadual Paulista, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil
关键词
PREAMPLIFIED HOMODYNE-DETECTION; WIGNER-FUNCTION; PHASE-SPACE; QUANTUM INFORMATION; PHOTON DISTRIBUTION; COHERENT STATES; ENTROPY; REPRESENTATION; DISTRIBUTIONS; INTERFERENCE;
D O I
10.1103/PhysRevA.76.032102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show how discrete squeezed states in an N-2-dimensional phase space can be properly constructed out of the finite-dimensional context. Such discrete extensions are then applied to the framework of quantum tomography and quantum information theory with the aim of establishing an initial study on the interference effects between discrete variables in a finite phase space. Moreover, the interpretation of the squeezing effects is seen to be direct in the present approach, and has some potential applications in different branches of physics.
引用
收藏
页数:13
相关论文
共 73 条
[1]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[2]  
BELLMAN R, 1966, BRIEF INTRO THETA FU
[3]   Bounds on general entropy measures [J].
Berry, DW ;
Sanders, BC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (49) :12255-12265
[4]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[5]   DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1882-+
[6]   ORDERED EXPANSIONS IN BOSON AMPLITUDE OPERATORS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1857-+
[7]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[8]   Information theory of quantum entanglement and measurement [J].
Cerf, NJ ;
Adami, C .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 120 (1-2) :62-81
[9]   A STOCHASTIC TREATMENT OF THE DYNAMICS OF AN INTEGER SPIN [J].
COHENDET, O ;
COMBE, P ;
SIRUGUE, M ;
SIRUGUECOLLIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (13) :2875-2883