Spectra and probability distributions of thermal flux in turbulent Rayleigh-Benard convection

被引:4
作者
Pharasi, Hirdesh K. [1 ]
Kumar, Deepesh [2 ]
Kumar, Krishna [3 ]
Bhattacharjee, Jayanta K. [4 ]
机构
[1] Doon Univ, Dept Phys, Dehra Dun 248001, Uttar Pradesh, India
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
[3] Indian Inst Technol, Dept Phys, Kharagpur 721302, W Bengal, India
[4] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India
关键词
SMALL-SCALE PROPERTIES; NUMBERS;
D O I
10.1063/1.4948644
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The spectra of turbulent heat flux H(k) in Rayleigh-Benard convection with and without uniform rotation are presented. The spectrum H(k) scales with wave number k as similar to k(-2). The scaling exponent is almost independent of the Taylor number Ta and Prandtl number Pr for higher values of the reduced Rayleigh number r (>10(3)). The exponent, however, depends on Ta and Pr for smaller values of r (<10(3)). The probability distribution functions of the local heat fluxes are non-Gaussian and have exponential tails. Published by AIP Publishing.
引用
收藏
页数:12
相关论文
共 22 条
[1]   On the evolution of flow topology in turbulent Rayleigh-Benard convection [J].
Dabbagh, F. ;
Trias, F. X. ;
Gorobets, A. ;
Oliva, A. .
PHYSICS OF FLUIDS, 2016, 28 (11)
[2]   Thermal boundary layer structure in turbulent Rayleigh-Benard convection in a rectangular cell [J].
Zhou, Quan ;
Xia, Ke-Qing .
JOURNAL OF FLUID MECHANICS, 2013, 721 :199-224
[3]   Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Brown, Eric ;
Araujo, Francisco Fontenele ;
Funfschilllng, Denis ;
Grossmann, Siegfried ;
Lohse, Detlef .
JOURNAL OF FLUID MECHANICS, 2006, 569 :409-445
[4]   Confined Rayleigh-Benard, Rotating Rayleigh-Benard, and Double Diffusive Convection: A Unifying View on Turbulent Transport Enhancement through Coherent Structure Manipulation [J].
Chong, Kai Leong ;
Yang, Yantao ;
Huang, Shi-Di ;
Zhong, Jin-Qiang ;
Stevens, Richard J. A. M. ;
Verzicco, Roberto ;
Lohse, Detlef ;
Xia, Ke-Qing .
PHYSICAL REVIEW LETTERS, 2017, 119 (06)
[5]   Heat-flux fluctuations revealing regime transitions in Rayleigh-Benard convection [J].
Labarre, Vincent ;
Fauve, Stephan ;
Chibbaro, Sergio .
PHYSICAL REVIEW FLUIDS, 2023, 8 (05)
[6]   Heat transport by coherent Rayleigh-Benard convection [J].
Waleffe, Fabian ;
Boonkasame, Anakewit ;
Smith, Leslie M. .
PHYSICS OF FLUIDS, 2015, 27 (05)
[7]   Quantifying spatiotemporal chaos in Rayleigh-Benard convection [J].
Karimi, A. ;
Paul, M. R. .
PHYSICAL REVIEW E, 2012, 85 (04)
[8]   Optimal heat transport solutions for Rayleigh-Benard convection [J].
Sondak, David ;
Smith, Leslie M. ;
Waleffe, Fabian .
JOURNAL OF FLUID MECHANICS, 2015, 784 :565-595
[9]   Scaling behaviour in Rayleigh-Benard convection with and without rotation [J].
King, E. M. ;
Stellmach, S. ;
Buffett, B. .
JOURNAL OF FLUID MECHANICS, 2013, 717 :449-471
[10]   The Pr-dependence of the critical roughness height in two-dimensional turbulent Rayleigh-Benard convection [J].
Yang, Jian-Lin ;
Zhang, Yi-Zhao ;
Jin, Tian-cheng ;
Dong, Yu-Hong ;
Wang, Bo-Fu ;
Zhou, Quan .
JOURNAL OF FLUID MECHANICS, 2021, 911