Lightweight Self-Attention Network for Semantic Segmentation

被引:1
作者
Zhou, Yan [1 ]
Zhou, Haibin [2 ]
Li, Nanjun [3 ]
Li, Jianxun [4 ]
Wang, Dongli [1 ]
机构
[1] Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Shenzhen CBPM KEXIN Banking Technol CO LTD, Shenzhen 518000, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
基金
中国国家自然科学基金;
关键词
Semantic segmentation; Attention module; Encoder-decoder architecture;
D O I
10.1109/IJCNN55064.2022.9891928
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The deep neural network model based on self-attention (SA) for obtaining rich contextual information has been widely adopted in semantic segmentation. However, the computational complexity of the standard self-attentive module is high, which partly limits the use of this module. In this work, we propose the lightweight self-attention network (LSANet) for semantic segmentation. Specifically, the Lightweight Self-Attentive Module (LSAM) captures information using a hand-designed compact feature representation, and weighted fusion of position information. In the decoder structure, an improved up-sampling module is proposed. Compared with the bilinear upsampling, this method achieves better results in restoring image details. The experimental results on PASCAL VOC 2012, and Cityscapes datasets show the effectiveness of our method, which simplifies operations and improves performance.
引用
收藏
页数:8
相关论文
共 44 条
  • [1] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [2] Chen LC, 2017, Arxiv, DOI [arXiv:1706.05587, 10.48550/arxiv.1706.05587.ArXiv, DOI 10.48550/ARXIV.1706.05587.ARXIV]
  • [3] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [4] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [5] Chorowski J, 2015, ADV NEUR IN, V28
  • [6] Cordts M., 2015, CVPR WORKSHOP FUTURE
  • [7] Everingham M., 2010, INT J COMPUT VISION, V88, P303, DOI DOI 10.1007/s11263-009-0275-4
  • [8] Dual Attention Network for Scene Segmentation
    Fu, Jun
    Liu, Jing
    Tian, Haijie
    Li, Yong
    Bao, Yongjun
    Fang, Zhiwei
    Lu, Hanqing
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3141 - 3149
  • [9] CE-Net: Context Encoder Network for 2D Medical Image Segmentation
    Gu, Zaiwang
    Cheng, Jun
    Fu, Huazhu
    Zhou, Kang
    Hao, Huaying
    Zhao, Yitian
    Zhang, Tianyang
    Gao, Shenghua
    Liu, Jiang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) : 2281 - 2292
  • [10] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778